Random Walk Algorithms: Lecture 13
David A. Meyer

In which the discrete Fourier transform is derived, and used to diagonalize the transition probability matrix for homogeneous random walks in one dimension.

The discrete Fourier transform

To diagonalize X, notice that $X^N = I$, so if (λ, \vec{v}) is an (eigenvalue, eigenvector) pair for X, i.e., $X \vec{v} = \lambda \vec{v}$, with $\vec{v} \neq 0$, then

$$\vec{v} = I \vec{v} = X^N \vec{v} = \lambda^N \vec{v},$$

so we can conclude $\lambda^N = 1$. That is, if we set $\omega = e^{2\pi i/N}$, the set of eigenvalues of X is $\{\omega^k | k \in \{0, \ldots, N - 1\}\}$.

To find the corresponding eigenvectors we must solve:

$$0 = (X - \omega^k I) \vec{v} = \begin{pmatrix} -\omega^k & -\omega^k & \cdots & -\omega^k \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{N-1} \end{pmatrix}.$$

Setting $v_0 = 1$, this implies $1 - \omega^k v_1 = 0$, so $v_1 = \omega^{-k}$. Then $\omega^{-k} - \omega^k v_2 = 0$, so $v_2 = \omega^{-2k}$, etc. Normalizing the eigenvectors to have norm 1 gives

$$\hat{f}_k = \frac{1}{\sqrt{N}} \begin{pmatrix} \omega^{-k} \\ \omega^{-2k} \\ \vdots \\ \omega^{-(N-1)k} \end{pmatrix}.$$

Denoting conjugate transpose by †, we have

$$\hat{f}_j^\dagger \hat{f}_k = \frac{1}{N} \sum_{n=0}^{N-1} \omega^{nj} \omega^{-nk} = \frac{1}{N} \sum_{n=0}^{N-1} \omega^{n(j-k)} = \begin{cases} \frac{1}{N} & \text{if } j \neq k; \\ \frac{1}{1 - \omega^{-N} j^{-k}} & \text{if } j = k. \end{cases}$$

Since the \hat{f}_k are the columns of the diagonalizing matrix,

$$F = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(N-1)} \\ 1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-(N-1)^2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{-(N-1)} & \omega^{-(N-1)^2} & \cdots & \omega^{-(N-1)^2} \end{pmatrix}.$$
and $F^\dagger F = I = FF^\dagger$, so $F^{-1} = F^\dagger$, i.e., F is unitary. F is called the discrete Fourier transform, perhaps first written down in this form by Sylvester [1].

Diagonalizing the transition probability matrix

As we noted in Lecture 12, since F diagonalizes X, it also diagonalizes B:

$$F^{-1}BF = \frac{1}{4}F^{-1}(X + 2I + X^{-1})F$$

$$= \frac{1}{4}\left(\begin{pmatrix}
1 & \omega^{-1} & \cdots & \omega^{-(N-1)} \\
\omega^{-1} & 2 & \cdots & 2 \\
\vdots & \ddots & \ddots & \vdots \\
\omega^{-(N-1)} & 2 & \cdots & 1
\end{pmatrix}\right) + \left(\begin{pmatrix}
1 & \omega^{-1} & \cdots & \omega^{-(N-1)} \\
\omega^{-1} & 2 & \cdots & 2 \\
\vdots & \ddots & \ddots & \vdots \\
\omega^{-(N-1)} & 2 & \cdots & 1
\end{pmatrix}\right),$$

so the set of eigenvalues of B is

$$\left\{ \lambda_k = \frac{1}{4}(\omega^k + \omega^{-k} + 2) = \frac{1}{2}(\cos \frac{2\pi k}{N} + 1) \mid k \in \{0, \ldots, \lfloor N/2 \rfloor\} \right\}.$$

Notice immediately that $\lambda_0 = 1$, with eigenspace spanned by $\hat{f}_0 = (1,1,\ldots,1)/\sqrt{N}$; $\lambda_k = \lambda_{N-k}$ for $0 < k < N/2$, with eigenspace spanned by \hat{f}_k and \hat{f}_{N-k}; and $\lambda_{N/2} = 0$, if N even, with eigenspace spanned by $\hat{f}_{N/2} = (1,-1,\ldots,1,-1)/\sqrt{N}$.

References