
Solutions in red 20D FINAL

1. (10 points) Solve the equation
dy

dx
= (x + y)2 subject to the initial condition y(0) = 0.

[Hint: Let z(x) = y(x) + x.]

This is a first order equation, but it is not separable, linear, or exact. Making the suggested
change of variables gives z′ = y′ +1, so the ODE becomes z′− 1 = z2, or z′ = z2 +1. This
equation is separable: ∫

dz

z2 + 1
=

∫

dx = x + c.

To do the first integral, substitute z = tan θ; dz = sec2 θ dθ to get:

x + c =

∫
sec2 θ dθ

tan2 θ + 1
=

∫

dθ = θ = arctan z.

Taking the tangent of both sides gives tan(x+ c) = z = y +x, so y = tan(x+ c)−x. Since
y(0) = 0, c = 0, so y = −x + tanx.
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2. (15 points) Find the general solution of
d2y

dx2
+ y =

1

sin x
.

This is a second order, linear, constant coefficient inhomogeneous equation. Solving the
homogeneous equation first, we write the characteristic equation r2 +1 = 0, which implies
r = ±i. Thus yh(x) = c1 cos x+c2 sin x. To find a particular solution to the inhomogeneous
equation, use variation of parameters:

y = u(x) cosx + v(x) sinx

y′ = u′ cos x + v′ sinx
︸ ︷︷ ︸

= 0

−u sin x + v cos x

y′′ = −u′ sin x + v′ cos x
︸ ︷︷ ︸

= 1/ sin x

−u cos x − v sin x.

Solving for u′ and v′ gives:

u′ = −1 =⇒ u = −
∫

dx = −x + c1

v′ =
cos x

sinx
=⇒ v =

∫
cos x dx

sin x
= ln| sinx| + c2,

so the general solution is y(x) = c1 cos x + c2 sin x − x cos x + ln| sinx| sinx.
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3. (15 points) Describe a system in the real world that can be modelled using an ordinary
differential equation or a system of ordinary differential equations. Define the variables
in the model and write down the equation(s).

Any of the examples from the text, or from lecture, would be an acceptable answer for
this question; more interesting answers talked about some of the many other systems that
you can model with differential equations. I did require that you described the system,
defined the variables, and wrote down the relevant differential equations. I wanted to
see an explanation of why each term is in the equation(s). Solving the equations was
not necessary, but to the extent that it helped you explain why the differential equation
provided a good model of the system, it was worth doing.
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4. (5 points) Determine a lower bound for the radius of convergence of a power series
solution to (x2 − 2x + 2)y′′ + y′ + xy = 0 around x = 0.

Rewriting this equation so that the coefficient of y′′ is 1 gives:

y′′ +
1

x2 − 2x + 2
y′ +

x

x2 − 2x + 2
y = 0.

x = 0 is an ordinary point of this ODE since the coefficient functions are defined and
continuous there. Each has singularities when x2 − 2x+2 = 0, i.e., when x = 1± i. These
points are distance

√
12 + 12 =

√
2 away from x = 0, so a lower bound for the radius of

convergence of a power series solution around x = 0 is
√

2.
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5.a. (3 points) What is the set of ordinary points of the equation (1+x2)y′′+2xy′−2y = 0?
Since 1 + x2 6= 0 for all real x, the set of ordinary points is R, all real numbers.

b. (13 points) Find the general solution of the ODE in problem 5.a. This is a second
order, linear, homogeneous equation, but the coefficients are not constant. The only
systematic solution method we know is by power series. So let

y =
∞∑

n=0

anxn; y′ =
∞∑

n=0

nanxn−1; y′′ =
∞∑

n=0

n(n − 1)anxn−2.

Plugging these into the ODE gives:

0 = (1 + x2)

∞∑

n=0

n(n − 1)anxn−2 + 2x

∞∑

n=0

nanxn−1 − 2

∞∑

n=0

anxn

=
∞∑

n=0

n(n − 1)anxn−2 +
∞∑

n=0

n(n − 1)anxn +
∞∑

n=0

2nanxn −
∞∑

n=0

2anxn

=
∞∑

n=0

(
(n + 2)(n + 1)an+2 + n(n − 1)an + 2nan − 2an

)
xn

=⇒ 0 = (n + 2)(n + 1)an+2 +
(
n(n − 1) + 2n − 2

)
an =⇒ an+2 = −n − 1

n + 1
an

Using this recurrence relation we can compute:

a2 = −−1

1
a0 =

1

1
a0

a3 = 0

=⇒ a2k+1 = 0 for 1 ≤ k ∈ Z

a4 = −1

3
a2 = −1

3
a0

a6 = −3

5
a4 =

1

5
a0

=⇒ a2k =
(−1)k+1

2k − 1
a0 for 1 ≤ k ∈ Z

So the general solution to the ODE is

y(x) = a1x + a0

(
1 +

∞∑

k=1

(−1)k+1

2k − 1
x2k

)
= a1x + a0

(
1 + x

∞∑

k=0

(−1)k

2k + 1
x2k+1

)
.

You may, although you are not expected to, recognize the series as the Taylor series
for arctanx around x = 0. This means that the general solution to the ODE is
y(x) = a1x + a0(1 + x arctanx).

c. (4 points) If you noticed that y(x) = x solves the ODE in problem 5.a, what method
(other than the one you used in problem 5.b) could you use to find a second, lin-
early independent, solution? Plug in the form y(x) = u(x)x. This will give a first
order equation for u′(x). Alternatively, you could use Abel’s theorem to compute the
Wronskian and use that to get a first order equation for a second, linearly independent
solution.
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6.a. (2 points) Compute the Laplace transform of f(t) = eat.

∫
∞

0

e−steatdt =

∫
∞

0

e(a−s)tdt =
e(a−s)t

a − s

∣
∣
∣

∞

0
=

1

s − a
for s > a.

b. (3 points) Remember that

uc(t) =

{

0 if t < c;
1 if t ≥ c.

Compute the Laplace transform of g(t) = u1(t)e
a(t−1).

∫
∞

0

e−stu1(t)e
a(t−1)dt =

∫
∞

1

e−stea(t−1)dt =

∫
∞

0

e−s(r+1)eardr where r = t − 1

= e−s

∫
∞

0

e−sreardr = e−sL[ear] =
e−s

s − a
for s > a.

c. (15 points) Solve the equation

dy

dt
= y + 1 − 2u1(t)e

−(t−1),

when y(0) = 0. Taking the Laplace transform of both sides of this equation and
setting Y (s) = L[y] gives:

−y(0) + sY (s) = Y (s) + L[1] − 2L[u1(t)e
−(t−1)] = Y (s) +

1

s
− 2

e−s

s + 1
for s > 0,

using the results of parts (a) and (b). Solving for Y (s) gives:

Y (s) =
1

s(s − 1)
− 2

e−s

(s + 1)(s − 1)
= −1

s
+

1

s − 1
+ e−s

(
1

s + 1
− 1

s − 1

)

,

where we’ve used partial fractions twice. Now use the results of parts (a) and (b)
again to find the inverse Laplace transforms of the terms on the right hand side and
conclude:

y(t) = −1 + et + u1(t)(e
−(t−1) − et−1).
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7. (15 points) Find the general solution to
dx

dt
=

(
1 1
4 1

)

x +

(
2
−1

)

et.

First solve the homogeneous equation by finding the eigenvalues and eigenvectors of the
coefficient matrix:

0 =

∣
∣
∣
∣

1 − r 1
4 1 − r

∣
∣
∣
∣
= r2 − 2r − 3 = (r − 3)(r + 1) =⇒ r ∈ {3,−1};

r = 3 =⇒
(
−2 1
4 −2

) (
v1

v2

)

= 0 =⇒ v =

(
1
2

)

r = −1 =⇒
(

2 1
4 2

) (
v1

v2

)

= 0 =⇒ v =

(
1
−2

)

=⇒ xh = c1

(
1
2

)

e3t + c2

(
1
−2

)

e−t.

Now we could diagonalize the coefficient matrix to solve the inhomogeneous equation, but
we can also look for a particular solution of the form xp = uet. Plugging in gives:

uet =

(
1 1
4 1

)

uet +

(
2
−1

)

et =⇒
(

0 1
4 0

)

u =

(
−2
1

)

=⇒ u =

(
1/4
−2

)

,

so the general solution to the equation is

x(t) = c1

(
1
2

)

e3t + c2

(
1
−2

)

e−t +

(
1/4
−2

)

et.
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8. (Extra credit) Let F (s) = L[tn].

a. (4 points) Compute F (s).

L[tn] =

∫
∞

0

tn
︸︷︷︸

= u

e−stdt
︸ ︷︷ ︸

=dv

= − tn

s
e−st

∣
∣
∣

∞

0
+

n

s

∫
∞

0

tn−1e−stdt.

The first term in the right hand expression vanishes for s > 0, so

F (s) = L[tn] =
n

s
L[tn−1] =

n(n − 1)

s2
L[tn−1] = · · · =

n!

sn
L[1] =

n!

sn+1
for s > 0.

b. (1 point) What is F (1)? F (1) = n!/1n+1 = n!.

c. (5 points) Use the results of problems 8.a and 8.b to create a definition for ( 1
2 )!.

Since F (1) = n!, a reasonable definition of ( 1
2 )! is L[t1/2], evaluated at s = 1, namely

(1

2

)
! =

∫
∞

0

e−tt1/2dt.
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