1.a. (20 points) Find the general solution to the system of equations:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{1}+x_{2} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=4 x_{1}-2 x_{2} .
\end{aligned}
$$

Compute the eigenvalues and eigenvectors of the coefficient matrix:

$$
\begin{aligned}
0 & =\left|\begin{array}{cc}
1-r & 1 \\
4 & -2-r
\end{array}\right|=r^{2}+r-6=(r+3)(r-2) \quad \Longrightarrow \quad r \in\{-3,2\} \\
r & =-3 \Longrightarrow\left(\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\mathbf{0} \quad \Longrightarrow \quad \mathbf{v}=\binom{1}{-4} \\
r & =2 \Longrightarrow\left(\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right)\binom{v_{1}}{v_{2}}=\mathbf{0} \quad \Longrightarrow \quad \mathbf{v}=\binom{1}{1} \\
\Longrightarrow \mathbf{x} & =c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}
\end{aligned}
$$

b. (10 points) Sketch the solutions to this system of equations in the $\left(x_{1}, x_{2}\right)$ plane.

c. (10 points) Find the solution that goes through the point $(5,0)$ at $t=0$.

$$
\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{5}{0} \quad \Longrightarrow \quad\binom{c_{1}}{c_{2}}=\binom{1}{4} \quad \Longrightarrow \quad \mathbf{x}=\binom{1}{-4} e^{-3 t}-4\binom{1}{1} e^{2 t}
$$

2. Consider the differential equation

$$
(1-x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=g(x)
$$

where $g(x)$ is an arbitrary function and $0<x<1$.
a. (5 points) Show that $y_{1}(x)=e^{x}$ and $y_{2}(x)=x$ solve this equation when $g(x)=0$.

$$
\begin{aligned}
& (1-x) e^{x}+x e^{x}-e^{x}=0 \quad \Longrightarrow \quad y_{1}(x)=e^{x} \text { solves the equation } \\
& (1-x) \cdot 0+x \cdot 1-x=0 \quad \Longrightarrow \quad y_{2}(x)=x \text { solves the equation }
\end{aligned}
$$

b. (5 points) Show that the functions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent on the interval $0<x<1$. Compute the Wronskian:

$$
W\left[y_{1}, y_{2}\right](x)=\left|\begin{array}{ll}
e^{x} & x \\
e^{x} & 1
\end{array}\right|=e^{x}(1-x) \neq 0 \text { for } 0<x<1
$$

so these are linearly independent solutions.
c. (20 points) Find the general solution to this equation for an arbitrary function $g(x)$. Hint: Your answer should involve integrals that depend upon $g(x)$, which means that you won't be able to evaluate them since you don't know what $g(x)$ is. Use variation of parameters:

$$
\begin{aligned}
& y=u(x) e^{x}+v(x) x ; \quad y^{\prime}=\underbrace{u^{\prime} e^{x}+v^{\prime} x}_{=0}+u e^{x}+v ; \quad y^{\prime \prime}=u^{\prime} e^{x}+v^{\prime}+u e^{x} \\
\Longrightarrow & (1-x)\left(u^{\prime} e^{x}+v^{\prime}+u e^{x}\right)+x\left(u e^{x}+v\right)-\left(u(x) e^{x}+v(x) x\right)=g(x) \\
\Longrightarrow & u^{\prime} e^{x}+v^{\prime}=g(x) /(1-x)
\end{aligned}
$$

Solving for u^{\prime} and v^{\prime} gives:

$$
\begin{aligned}
u^{\prime} & =-\frac{x e^{-x} g(x)}{(1-x)^{2}} \Longrightarrow u(x)=-\int^{x} \frac{t e^{-t} g(t)}{(1-t)^{2}} \mathrm{~d} t \\
v^{\prime} & =\frac{g(x)}{(1-x)^{2}} \Longrightarrow v(x)=\int^{x} \frac{g(t)}{(1-t)^{2}} \mathrm{~d} t \\
\Longrightarrow y(x) & =-e^{x} \int^{x} \frac{t e^{-t} g(t)}{(1-t)^{2}} \mathrm{~d} t+x \int^{x} \frac{g(t)}{(1-t)^{2}} \mathrm{~d} t
\end{aligned}
$$

3.a. (15 points) Find the general solution to the equation $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$. Try $y(t)=e^{r t}$. Plugging in gives:

$$
r^{3} e^{r t}+3 r^{2} e^{r t}+3 r e^{r t}+e^{r t}=0 \quad \Longrightarrow \quad 0=r^{3}+3 r^{2}+3 r+1=(r+1)^{3} .
$$

By analogy with repeated roots for second order equations, this implies that the general solution is $y(t)=\left(c_{1}+c_{2} t+c_{3} t^{2}\right) e^{-t}$.
b. (15 points) Define a change of variables so that this third order equation is equivalent to a system of 3 first order linear, constant coefficient ODEs, and write down that system of equations.

$$
\begin{aligned}
& x_{1}=y \\
& x_{2}=y^{\prime} \\
& x_{3}=y^{\prime \prime}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=-3 x_{3}-3 x_{2}-x_{1}
\end{aligned}
$$

4. (Extra credit: 15 points) Find the general solution of the second order differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=\ln x
$$

by making the change of variables $x=e^{t}$ (which leads to a constant coefficient second order linear ODE).

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d} y}{\mathrm{~d} t}=e^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(e^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)=e^{-t}\left(e^{-t} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-e^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)=e^{-2 t}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}\right) \\
\Longrightarrow & e^{2 t} e^{-2 t}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}\right)+3 e^{t} e^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=t \quad \Longrightarrow \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=t
\end{aligned}
$$

This is a constant coefficient inhomogeneous linear equation for $y(t)$, so first solve the homogeneous equation using the characteristic equation:

$$
0=r^{2}+2 r-3=(r+3)(r-1) \quad \Longrightarrow \quad y_{h}(t)=c_{1} e^{-3 t}+c_{2} e^{t} .
$$

Now try $y_{p}(t)=a t+b$, which implies $t=2 a-3(a t+b)=-3 a t+(2 a-3 b)$, so $a=-1 / 3$ and $b=-2 / 9$. Thus

$$
\begin{aligned}
y(t) & =c_{1} e^{-3 t}+c_{2} e^{t}-\frac{1}{3} t-\frac{2}{9} \\
\Longrightarrow y(x) & =c_{1} x^{-3}+c_{2} x-\frac{1}{3} \ln x-\frac{2}{9} .
\end{aligned}
$$

