## 21D (NOT EXACTLY SAMPLE) EXAM PROBLEM ANSWERS

2.a. The characteristic equation for the homogeneous equation is $r^{2}+1=0$, so $r= \pm i$. Thus the general solution to the homogeneous equation is:

$$
y(t)=c_{1} \cos t+c_{2} \sin t
$$

When $b \neq 1$, the inhomogeneous term $\cos (b t)$ is not part of the solution to the homogeneous equation, so a particular solution to the inhomogeneous equation has the form:

$$
\begin{aligned}
y & =A \cos (b t)+B \sin (b t) \\
\Rightarrow y^{\prime} & =-A b \sin (b t)+B b \cos (b t) \\
\Rightarrow y^{\prime \prime} & =-A b^{2} \cos (b t)-B b^{2} \sin (b t)
\end{aligned}
$$

Plugging these into the inhomogenous equation gives:

$$
-A b^{2} \cos (b t)-B b^{2} \sin (b t)+A \cos (b t)+B \sin (b t)=\cos (b t)
$$

Since this must hold for all $t$, it must in particular hold for $t=0$ and $t=\pi /(2 b)$. At these values we get

$$
\begin{aligned}
& -A b^{2}+A=1 \Rightarrow A=\frac{1}{1-b^{2}} \\
& -B b^{2}+B=0 \Rightarrow B=0
\end{aligned}
$$

So the general solution to the inhomogeneous equation is

$$
y(t)=c_{1} \cos t+c_{2} \sin t+\frac{1}{1-b^{2}} \cos (b t)
$$

Then the initial conditions imply that

$$
1=y(0)=c_{1}+\frac{1}{1-b^{2}} \quad \Rightarrow \quad c_{1}=\frac{-b^{2}}{1-b^{2}}
$$

and $0=y^{\prime}(0)=c_{2}$. So finally, the solution to the inhomogeneous equation that satisfies the initial condition is:

$$
y(t)=\frac{-b^{2}}{1-b^{2}} \cos t+\frac{1}{1-b^{2}} \cos (b t)
$$

b. When $b=1$, the inhomogeneous term is part of the solution to the homogeneous equation, so a particular solution to the inhomogeneous equation has the form:

$$
\begin{aligned}
y & =t(A \cos t+B \sin t) \\
\Rightarrow y^{\prime} & =t(-A \sin t+B \cos t)+(A \cos t+B \sin t) \\
\Rightarrow y^{\prime \prime} & =t(-A \cos t-B \sin t)+2(-A \sin t+B \cos t)
\end{aligned}
$$

Plugging these into the inhomogenous equation gives:

$$
t(-A \cos t-B \sin t)+2(-A \sin t+B \cos t)+t(A \cos t+B \sin t)=\cos t
$$

## 21D (NOT EXACTLY SAMPLE) EXAM PROBLEM ANSWERS

which simplifies to $2(-A \sin t+B \cos t)=\cos t$. Thus $A=0$ and $B=1 / 2$, so the general solution to the inhomogeneous equation is

$$
y(t)=c_{1} \cos t+c_{2} \sin t+\frac{1}{2} t \sin t .
$$

Then the initial conditions imply that $1=y(0)=c_{1}$ and $0=y^{\prime}(0)=c_{2}$. So finally, the solution to the inhomogeneous equation that satisfies the initial condition is:

$$
y(t)=\cos t+\frac{1}{2} t \sin t .
$$

c. In the following plot $b=1 / 2$ is blue, $b=3 / 4$ is green, $b=7 / 8$ is yellow, and $b=1$ is red.


