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MATH 217A. Introduction to Quantum Algorithms

David A. Meyer

Lecture 2. Random walks and PDEs

In the previous lecture we discussed Feynman’s argument that it is possible to simulate
classical and probabilistic physical systems, but not quantum systems, efficiently on a
classical computer [1]. With this as motivation, let us consider a very simple quantum
system, a quantum particle evolving on ZN , the integers modulo N , which we may think
of as the cycle graph CN . In considering this system we are taking seriously Feynman’s
starting assumption that space be discrete; a more familiar physical setting, however, is
an electron moving in a (one-dimensional) crystal, where it hops from the neighborhood
of one crystal atom to another [2, §13.1].

Postulate 0 of quantum mechanics says that the state of this system is represented by a
vector ψ in some (projective) Hilbert space H. To understand which we introduce:

POSTULATE 1. A (complete) measurement of a quantum system is represented by an
orthonormal basis {ei} of H. The result of this measurement is probabilistic: the state
becomes ei with probability |〈ei|ψ〉|2.

Here 〈ei|ψ〉 is the inner product ēi ·ψ. In Dirac notation |ψ〉 = ψ ∈ H, while

〈ei| = e†i ∈ H† is the dual (adjoint) of ei.

Notice that this implies that the state of the quantum system should be a unit vector, i.e.,∑
i |〈ei|ψ〉|2 = 1 = 〈ψ|ψ〉 = ψ†ψ, so that the result probabilities sum to 1. It also explains

why it is only the element in P (H) that matters: we can choose any norm 1 representative
of the equivalence class of scalar multiples of ψ ∈ H since multiplying ψ by a unit complex
number, a phase, does not change the results of measurements, nor their probabilities.

For the system of a particle evolving quantum mechanically on ZN , it is reasonable to
take {ex | x ∈ ZN} to be a measurement, i.e., to imagine that there is an experiment that
would measure the location (position) of the particle.∗ Thus the Hilbert space in which
the state of this system lies is CN . Writing the state ψ ∈ CN in the position basis, we
have:

ψ =


〈e0|ψ〉
〈e1|ψ〉

...
〈eN−1|ψ〉

 =:


ψ0

ψ1
...

ψN−1

 .

What should be the dynamics of this system? We assume that the evolution is local (the
change in ψx depends only on the values of ψy for y ∈ N (x) ⊂ ZN , some neighborhood of

∗ There are, however, situations in which this is not a reasonable assumption and in which it would be
more appropriate to take the distinct locations to be indistinguishable. We may discuss this later.
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x), homogeneous (translation invariant), and symmetric (invariant under x 7→ −x). The
simplest model is linear:

dψ0

dt
= aψ0 + bψ1 + bψN−1

dψ1

dt
= bψ0 + aψ1 + bψ2

...
. . .

dψN−1
dt

= bψ0 + bψN−2 + aψN−1

, (1)

using the smallest nontrivial, symmetric neighborhood, N (x) = {x− 1, x, x+ 1}.

More generally, such linear dynamics take the form

ψ̇ = Aψ. (2)

The condition that ψ always has norm 1 imposes constraints on A:

1 = ψ†ψ =⇒ 0 =
d

dt
(ψ†ψ) = ψ̇†ψ + ψ†ψ̇ = ψ†A†ψ + ψ†Aψ = ψ†(A† +A)ψ,

which implies A† = −A, i.e., A is skew-Hermitian, or A ∈ u(N), the Lie algebra of U(N)
(which is the Lie group of transformations of CN preserving the `2-norm). Thus we can
write A = −iH, where H is real and symmetric, and (2) becomes

iψ̇ = Hψ. (3)

H is called the Hamiltonian of the system, and (3) is the Schrödinger equation.

In principle, it is easy to solve (3): Since H is symmetric, we can diagonalize it to be
H = OΛOT, where O is orthogonal and Λ = diag(λ0, . . . , λN−1) is the diagonal matrix
with the eigenvalues of H along its diagonal. Then (3) becomes iOTψ̇ = ΛOTψ, or
iφ̇ = Λφ if we set φ = OTψ. This system is uncoupled, so we can solve for each component
φk(t) = φk(0)e−iλkt; then ψ(t) = Oφ(t).

Notice that if we change H to H + EI, where E ∈ R and I is the N -dimensional identity
matrix, all the eigenvalues simply shift by E, to λk +E, and ψ(t) is multiplied by a phase,
becoming ψ(t)e−iEt. As we noted earlier, this phase has no physical meaning (its physical
interpretation is a choice for the 0 of energy which, at least in non-general relativistic
theories, has no physical consequences). Thus we can add any convenient multiple of the
identity to the Hamiltonian.

Writing the model (1) in terms of the Hamiltonian, set b = iγ and, taking advantage of
this freedom, set a = −2iγ, so that

H =


2γ −γ −γ
−γ 2γ −γ

. . .

−γ −γ 2γ

 = −γ


−2 1 1
1 −2 1

. . .

1 1 −2

 = −γL,
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where L = A−D is the graph Laplacian. Here A is the adjacency matrix of a graph: Axy
is 1 if vertices x and y are connected by an edge and 0 otherwise; D is a diagonal matrix
with dxx being the degree of vertex x, namely the number of other vertices with which it
shares an edge. Equation (3) with H = −γL describes continuous time quantum evolution
on any graph. For the cycle CN , the system of differential equations is

i
dψx
dt

= −γ(ψx+1 − 2ψx + ψx−1), x ∈ ZN . (4)

The form of the right hand side on (4) (and the name “graph Laplacian”) suggests taking
a continuum limit. Suppose we define a metric on the graph CN by assigning a length ε =
1/N to each edge. Then it discretizes the unit interval with periodic boundary conditions,
and thus ψ discretizes a function S1 → C. Assuming this function is sufficiently smooth,
we can write:

ψx+1 − 2ψx + ψx−1 7→ ψ(x+ ε)− 2ψ(x) + ψ(x− ε) = ε2
∂2ψ

∂x2
+O(ε3).

So if we take the ε → 0 limit, keeping γε2 = κ constant, we get the familiar continuum
Schrödinger equation:

i
∂ψ

∂t
= −κ∂

2ψ

∂x2
.

In physical units, κ = ~/2m.

Now consider a classical stochastic particle hopping from vertex to adjacent vertex. Let

p =


p0
p1
...

pN−1


be the probability distribution (state) of the system, where px denotes the probability that
the particle is at position x; thus ‖p‖1 =

∑
x px = 1. If the rate for the particle to hop to

an adjacent vertex is b, the evolution is described by:

dp0
dt

= ap0 + bp1 + bpN−1

dp1
dt

= bp0 + ap1 + bp2

...
. . .

dpN−1
dt

= bp0 + bpN−2 + apN−1

. (5)

Since p must always have unit `1-norm,

0 =
d

dt
(p0 + · · ·+ pN−1) = (a+ 2b)(p0 + · · ·+ pN−1) =⇒ a = −2b.
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Thus (5) becomes
dp

dt
= bLp (6)

and, just the case of quantum evolution, this holds for any graph. Also, just as in the case
of quantum evolution, we can take the continuum limit of (6) by letting the edge length
ε→ 0 while keeping bε2 = κ constant. For sufficiently smooth p(x) this gives

∂p

∂t
= κ

∂2p

∂x2
(7)

This is the diffusion or heat equation.

The classical model described by (6) is a continuous time (classical) random walk. By
analogy, the quantum model described by (4) is a continuous time quantum random walk.
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