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MATH 217A. Introduction to Quantum Algorithms

David A. Meyer

Lecture 3. Continuous and discrete time classical random walks

In the previous lecture we discussed classical and quantum random walks on ZN , in contin-
uous time, and took continuum limits in space to get the heat and Schrödinger equations.

PROBLEM 3.1. The classical and quantum random walk evolutions preserve
the `1- and `2-norms, respectively, of the state vector. Can you construct a
system of linear ODEs, local on ZN , that preserves the `3-norm? If not, can
you prove it is impossible? Or can you construct a nonlocal, or nonlinear
system that does so? For context and hints see [1] and [2].

The physical systems Feynman considered in his original paper [3], however, are discrete
in time, as well as in space. So we want to consider discrete time random walks, starting
with classical ones.

Discrete time integrated random walk

The continuous time dynamics from the last lecture is ṗ = bLp, which has solution

p(t) = ebLtp(0) = M(t)p(0), (1)

where M(t) is a one-parameter family of Markov matrices, i.e., matrices with non-negative
entries summing to 1 in each column, which thus preserve the `1-norm.

A Markov matrix P is embeddable if there is an intensity matrix Q, such
that P = eQ and eQt is a Markov matrix for t ≥ 0. Q has non-negative off-
diagonal entries, and each column sums to 0. For each t, M(t) defined by (1)
is embeddable, since it is embedded in the one-parameter family M(t) = ebLt.
See Davies [4] for a recent survey of results on this topic.

Integrating the continuous time evolution of (1) for time ∆t will give a discrete time
evolution matrix M(∆t) = ebL∆t.

Since the dynamics is translation invariant: L = −2I + X + X−1, where Xij = δi,j+1,
i, j ∈ ZN , we can compute M(∆t) by diagonalizing L using the discrete Fourier transform:

Fkx =
1√
N
e−2πikx/N =

1√
N
ω−kx, where ωN = 1, so (F−1)yk =

1√
N
ωyk.

For practice let’s check that this is really F−1:

(F−1F )yx =
1

N

∑
k

ωykω−kx =
1

N

∑
k

ω(y−x)k =

{
1 if y − x = 0;
1
N

1−ω(y−x)N

1−ωy−x = 0 otherwise.

1



8 April 2013 v.0.9

The calculation for FF−1 is similar. Now let’s see that the discrete Fourier transform
diagonalizes X:

(F−1XF )yx =
1

N

∑
kl

ωykδk,l+1ω
−lx =

1

N

∑
k

ωykω−(k−1)x = ωx
1

N

∑
k

ωk(y−x) = ωxδyx.

Similarly, (F−1X−1F )yx = ω−xδyx. Thus

(F−1LF )yx = −2 + (ωx + ω−x)δyx = −|1− ωx|2δyx =: Dyx.

Now M(∆t) = FebD∆tF−1. The first column of ebD∆tF−1 is just the diagonal of ebD∆t,
so the zeroth column of M(∆t) is the discrete Fourier transform of this:

(
M(∆t)

)
y0

=
∑
x

Fyxe
−b|1−ωx|2∆t =

1√
N

∑
x

ω−yxe−b|1−ω
x|2∆t. (2)

M(∆t) is a circulant matrix, so this suffices to determine it completely.

PROBLEM 3.2. The elements of M are real since the x and −x terms in the
sum (2) are complex conjugates. Prove from the formula (2) that they are
non-negative, and sum to 1 in each column.

For large N , ω = e2πi/N =: e2πiε ≈ 1 + 2πiε, so 1 − ωx ≈ −2πixε, for x � N . In this
approximation,

M(∆t)y0 ≈
∑
x

e−2πiyxe−4π2x2ε2b∆t.

The zeroth column of M(∆t) is thus the discrete Fourier transform of a discretization of
a Gaussian; thus it is also a discretization of a Gaussian. In particular, M(∆t)y0 is not
supported only on y ∈ {0,±1}, so the Markov matrix for this discrete time integrated
random walk is not local in the way that the intensity matrix is.

An alternate (microscopic) perspective

The ODE

ṗx = bpx+1 − 2bpx + bpx−1

describes the change in the probability of a particle to be at position x when it is hopping
away from x, to x−1 or to x+ 1, each with equal probability, at a rate of 2b hops per unit
time. The adjacent figure shows a typical path, or history, for the particle; the times of
the hops constitute a Poisson process. In time ∆t any number n of hops is possible, with
probability given by

e−2b∆t(2b∆t)n

n!
.
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Thus

Pr(move y to right in time ∆t) =
∞∑
n=0

Pr(n hops) Pr(hops right − hops left = y)

=

∞∑
n=0

e−2b∆t(2b∆t)n

n!

(
n

(n− y)/2

)
1

2n
.

The latter term in the sum is approximately a Gaussian around y = 0, so the result is a
weighted sum of such Gaussians, with the largest weight for n ≈ 2b∆t. Again, we can see
that the probability distribution is not supported only on y ∈ {0,±1}.

Discrete time local random walk

Can we find a local discrete time random walk? It should be defined by pt+1 = Mpt, where
M is a Markov matrix with the same sparsity pattern as the intensity bL. If we assign
probability q to hopping in each time step, with the probability split equally between left
and right, we get:

px(t+ 1) =
q

2
px+1(t) + (1− q)px(t) +

q

2
px−1(t) (3)

=⇒ px(t+ 1)− px(t) =
q

2

(
px+1(t)− 2px(t) + px−1(t)

)
.

Assuming p(t, x) is a sufficiently smooth function of t and x, this becomes

∆t
∂p

∂t
=
q

2
(∆x)2 ∂

2p

∂x2
+ higher order terms

=⇒ ∂p

∂t
=
q

2

(∆x)2

∆t

∂2p

∂x2
+ higher order terms.

Now, taking the ∆x,∆t→ 0 limit with
q

2

(∆x)2

∆t
= κ gives

∂p

∂t
= κ

∂2p

∂x2
.

The stochastic process defined by (3) is the usual (discrete time, classical) random walk;
we have just shown that despite being local, it has the heat equation as its continuum
limit, just as does the nonlocal, discrete time integrated random walk (2).
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