Math 31A Extra Credit 3 (due Monday, 16 November 2009)
Let $\mathrm{O}(n)=\left\{A \in \operatorname{Mat}(n, n) \mid \forall \vec{v}, \vec{w} \in \mathbb{R}^{n},(A \vec{v}) \cdot(A \vec{w})=\vec{v} \cdot \vec{w}\right\}$. That is, $\mathrm{O}(n)$ consists of all the $n \times n$ real matrices that leave the dot product invariant.

1. Show that $\mathrm{O}(n)=\{A \in \operatorname{Mat}(n, n) \mid A$ is orthogonal $\}$.
2. Show that $\mathrm{O}(n)$ is a group under matrix multiplication, i.e.:
a. $I_{n} \in \mathrm{O}(n)$;
b. if $A \in \mathrm{O}(n)$ then A^{-1} exists and is in $\mathrm{O}(n)$;
c. $\mathrm{O}(n)$ is closed under matrix multiplication, i.e., if $A, B \in \mathrm{O}(n)$ then $A B \in \mathrm{O}(n)$.
3. Find an explicit description of the matrices in $\mathrm{O}(2)$.
4. Let $\mathrm{SO}(3)=\left\{A \in \mathrm{O}(3) \mid \forall \vec{v}, \vec{w} \in \mathbb{R}^{3},(A \vec{v}) \times(A \vec{w})=A(\vec{v} \times \vec{w})\right\}$. That is, $\mathrm{SO}(3)$ consists of 3×3 real matrices that leave the dot product invariant and for which the cross product is covariant.
a. Show that $\mathrm{SO}(3)$ is a group.
b. Show that $\mathrm{SO}(3)=\{A \in \mathrm{O}(3) \mid \operatorname{det} A=1\}$.
5. Give a geometrical interpretation of $\mathrm{O}(3)$ and $\mathrm{SO}(3)$.
