Name:

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 1 & -5 \end{bmatrix}$$
 and let $S = \{ \vec{x} \in \mathbb{R}^3 \mid A\vec{x} = \vec{0} \}.$

- a. [10 points] Is S a subspace of \mathbb{R}^3 ? Yes, S is a subspace of \mathbb{R}^3 .
- b. [15 points] Explain your answer to part (a).

Suppose $\vec{x}, \vec{y} \in S$. Then $A(\vec{x}+\vec{y}) = A\vec{x} + A\vec{y}$ (because multiplication by a matrix is a linear transformation). But $A\vec{x} = \vec{0}$ and $A\vec{y} = \vec{0}$ since $\vec{x}, \vec{y} \in S$, so $A(\vec{x}+\vec{y}) = \vec{0}+\vec{0} = \vec{0}$, so S is closed under addition. Similarly, for $\alpha \in \mathbb{R}$, $A(\alpha \vec{x}) = \alpha A\vec{x} = \alpha \vec{0} = \vec{0}$, so S is also closed under scalar multiplication. Thus S is a subspace of \mathbb{R}^3 .

	score
1	
2	
3	
4	
EC	
total	

31A MIDTERM 1

Name:

- 2. Let A and S be as defined in problem 1. Let \vec{a}^{T} and \vec{b}^{T} be the first and second rows of A, respectively.
 - a. [5 points] Compute $\vec{a} \times \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \times \begin{bmatrix} -2\\1\\-5 \end{bmatrix} = \begin{bmatrix} \det \begin{bmatrix} 1 & 1\\1 & -5 \end{bmatrix} \\ -\det \begin{bmatrix} 1 & -2\\1 & -5 \end{bmatrix} \\ \det \begin{bmatrix} 1 & -2\\1 & -5 \end{bmatrix} \\ \det \begin{bmatrix} 1 & -2\\1 & 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} -6\\3\\3 \end{bmatrix}$$

b. [10 points] Explain why $\vec{a} \times \vec{b} \in S$.

 $(A\vec{x})_1 = \vec{a} \cdot \vec{x}$ and $(A\vec{x})_2 = \vec{b} \cdot \vec{x}$. But $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0 = \vec{b} \cdot (\vec{a} \times \vec{b})$, so $A(\vec{a} \times \vec{b}) = \vec{0}$, which means $\vec{a} \times \vec{b} \in S$.

c. [10 points] Use your answers for parts (a) and (b) to write a different description of the set S than is given in problem 1.

S consists exactly of all vectors orthogonal to both \vec{a} and \vec{b} , namely

$$\{\alpha(\vec{a}\times\vec{b})\mid\alpha\in\mathbb{R}\}=\left\{\alpha\left[\begin{matrix}-2\\1\\1\end{matrix}\right]\mid\alpha\in\mathbb{R}\right\}.$$

31A MIDTERM 1

Name:

- - b. [10 points] Let \vec{h}_i be the i^{th} column of $H \otimes H$. Show that \vec{h}_i and \vec{h}_j are orthogonal if $i \neq j$.

For each pair of two different columns \vec{h}_i and \vec{h}_j of $H \otimes H$, there are two pairs of entries in which the corresponding entries are the same, and two pairs in which they are negatives of one another. Adding the products thus gives 0 for each pair of columns, so $\vec{h}_i \cdot \vec{h}_j = 0$, which means each pair of different columns is orthogonal.

c. [10 points] Find $(H \otimes H)^{-1}$.

Since $(H \otimes H)^{\mathsf{T}} = H \otimes H$, from part (b), all the off-diagonal elements in $H \otimes H(H \otimes H)$ are 0. It is easy to check that the diagonal elements are 1; thus $(H \otimes H)^{-1} = H \otimes H$.

31A MIDTERM 1

Name:

4. [25 points] Let $M_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation reflecting across the line making angle α with $\vec{e_1}$, and let $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation rotating counterclockwise by angle θ . Recall that

$$[M_{\alpha}] = \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} \quad \text{and} \quad [R_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Show that the composition $M_{\beta} \circ M_{\alpha}$ is $R_{2(\beta-\alpha)}$.

$$[M_{\beta} \circ M_{\alpha}] = [M_{\beta}][M_{\alpha}] = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix} \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix}$$
$$= \begin{bmatrix} \cos 2\beta \cos 2\alpha + \sin 2\beta \sin 2\alpha & \cos 2\beta \sin 2\alpha - \sin 2\beta \cos 2\alpha \\ \sin 2\beta \cos 2\alpha - \cos 2\beta \sin 2\alpha & \sin 2\beta \sin 2\alpha + \cos 2\beta \cos 2\alpha \end{bmatrix}$$
$$= \begin{bmatrix} \cos 2(\beta - \alpha) & -\sin 2(\beta - \alpha) \\ \sin 2(\beta - \alpha) & \cos 2(\beta - \alpha) \end{bmatrix} = [R_{2(\beta - \alpha)}]$$

Since the matrices representing these linear transformations are equal, the linear transformations are the same. Name:

Extra Credit. Let $C : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $C(\vec{u}, \vec{v}) = \vec{u} \times \vec{v}$.

a. [5 points] Is C a linear transformation? Explain your answer.

C is not a linear transformation. We can think of it as a function C: $\mathbb{R}^6 \to \mathbb{R}^3$, for $\vec{x} = (\vec{u}, \vec{v}) \in \mathbb{R}^6$, but it fails both conditions for linearity. $E.g., C(\alpha \vec{x}) = C(\alpha \vec{u}, \alpha \vec{v}) = (\alpha \vec{u}) \times (\alpha \vec{v}) = \alpha^2 (\vec{u} \times \vec{v}) \neq \alpha (\vec{u} \times \vec{v}).$

b. [10 points] Is C onto? For $\vec{w} \in \mathbb{R}^3$, give a geometrical description of $C^{-1}(\{\vec{w}\})$.

C is onto: Let $\vec{u} \perp \vec{v}$ lie in the plane orthogonal to \vec{w} and let $(\vec{u}, \vec{v}, \vec{w})$ have the same orientation as $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$. Choose their lengths so that $|\vec{u}||\vec{v}| = |\vec{w}|$. Then $\vec{u} \times \vec{v} = \vec{w}$. $C^{-1}(\{\vec{w}\})$ is all pairs of vectors in the plane orthogonal to \vec{w} with this orientation and such that $|\vec{u}||\vec{v}| \sin \theta = |\vec{w}|$, where θ is the angle from \vec{u} to \vec{v} .