1. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -2 & 1 & -5\end{array}\right]$ and let $S=\left\{\vec{x} \in \mathbb{R}^{3} \mid A \vec{x}=\overrightarrow{0}\right\}$.
a. [10 points] Is S a subspace of \mathbb{R}^{3} ?

Yes, S is a subspace of \mathbb{R}^{3}.
b. [15 points] Explain your answer to part (a).

Suppose $\vec{x}, \vec{y} \in S$. Then $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$ (because multiplication by a matrix is a linear transformation). But $A \vec{x}=\overrightarrow{0}$ and $A \vec{y}=\overrightarrow{0}$ since $\vec{x}, \vec{y} \in S$, so $A(\vec{x}+\vec{y})=\overrightarrow{0}+\overrightarrow{0}=$ $\overrightarrow{0}$, so S is closed under addition. Similarly, for $\alpha \in \mathbb{R}, A(\alpha \vec{x})=\alpha A \vec{x}=\alpha \overrightarrow{0}=\overrightarrow{0}$, so S is also closed under scalar multiplication. Thus S is a subspace of \mathbb{R}^{3}.

	score
1	
2	
3	
4	
EC	
total	

2. Let A and S be as defined in problem 1. Let \vec{a}^{\top} and \vec{b}^{\top} be the first and second rows of A, respectively.
a. [5 points] Compute $\vec{a} \times \vec{b}$.

$$
\vec{a} \times \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \times\left[\begin{array}{c}
-2 \\
1 \\
-5
\end{array}\right]=\left[\begin{array}{c}
\operatorname{det}\left[\begin{array}{cc}
1 & 1 \\
1 & -5
\end{array}\right] \\
-\operatorname{det}\left[\begin{array}{cc}
1 & -2 \\
1 & -5
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
-6 \\
3 \\
3
\end{array}\right]
$$

b. [10 points] Explain why $\vec{a} \times \vec{b} \in S$.
$(A \vec{x})_{1}=\vec{a} \cdot \vec{x}$ and $(A \vec{x})_{2}=\vec{b} \cdot \vec{x}$. But $\vec{a} \cdot(\vec{a} \times \vec{b})=0=\vec{b} \cdot(\vec{a} \times \vec{b})$, so $A(\vec{a} \times \vec{b})=\overrightarrow{0}$, which means $\vec{a} \times \vec{b} \in S$.
c. [10 points] Use your answers for parts (a) and (b) to write a different description of the set S than is given in problem 1.
S consists exactly of all vectors orthogonal to both \vec{a} and \vec{b}, namely

$$
\{\alpha(\vec{a} \times \vec{b}) \mid \alpha \in \mathbb{R}\}=\left\{\left.\alpha\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \right\rvert\, \alpha \in \mathbb{R}\right\}
$$

3. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and let B be an $n \times n$ matrix. Define the tensor product $A \otimes B$ to be the $2 n \times 2 n$ matrix $A \otimes B=\left[\begin{array}{l|l}a B & b B \\ \hline c B & d B\end{array}\right]$.
a. [5 points] For $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$, compute $H \otimes H$.

$$
H \otimes H=\frac{1}{\sqrt{2}}\left[\begin{array}{c|c}
H & H \\
\hline H & -H
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

b. [10 points] Let \vec{h}_{i} be the $i^{\text {th }}$ column of $H \otimes H$. Show that \vec{h}_{i} and \vec{h}_{j} are orthogonal if $i \neq j$.
For each pair of two different columns \vec{h}_{i} and \vec{h}_{j} of $H \otimes H$, there are two pairs of entries in which the corresponding entries are the same, and two pairs in which they are negatives of one another. Adding the products thus gives 0 for each pair of columns, so $\vec{h}_{i} \cdot \vec{h}_{j}=0$, which means each pair of different columns is orthogonal.
c. [10 points] Find $(H \otimes H)^{-1}$.

Since $(H \otimes H)^{\top}=H \otimes H$, from part (b), all the off-diagonal elements in $H \otimes H(H \otimes H)$ are 0 . It is easy to check that the diagonal elements are 1 ; thus $(H \otimes H)^{-1}=H \otimes H$.
4. [25 points] Let $M_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation reflecting across the line making angle α with \vec{e}_{1}, and let $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation rotating counterclockwise by angle θ. Recall that

$$
\left[M_{\alpha}\right]=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right] \quad \text { and } \quad\left[R_{\theta}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Show that the composition $M_{\beta} \circ M_{\alpha}$ is $R_{2(\beta-\alpha)}$.

$$
\begin{aligned}
{\left[M_{\beta} \circ M_{\alpha}\right] } & =\left[M_{\beta}\right]\left[M_{\alpha}\right]=\left[\begin{array}{cc}
\cos 2 \beta & \sin 2 \beta \\
\sin 2 \beta & -\cos 2 \beta
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
\sin 2 \alpha & -\cos 2 \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2 \beta \cos 2 \alpha+\sin 2 \beta \sin 2 \alpha & \cos 2 \beta \sin 2 \alpha-\sin 2 \beta \cos 2 \alpha \\
\sin 2 \beta \cos 2 \alpha-\cos 2 \beta \sin 2 \alpha & \sin 2 \beta \sin 2 \alpha+\cos 2 \beta \cos 2 \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos 2(\beta-\alpha) & -\sin 2(\beta-\alpha) \\
\sin 2(\beta-\alpha) & \cos 2(\beta-\alpha)
\end{array}\right]=\left[R_{2(\beta-\alpha)}\right]
\end{aligned}
$$

Since the matrices representing these linear transformations are equal, the linear transformations are the same.

Extra Credit. Let $C: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $C(\vec{u}, \vec{v})=\vec{u} \times \vec{v}$.
a. [5 points] Is C a linear transformation? Explain your answer.
C is not a linear transformation. We can think of it as a function C : $\mathbb{R}^{6} \rightarrow \mathbb{R}^{3}$, for $\vec{x}=(\vec{u}, \vec{v}) \in \mathbb{R}^{6}$, but it fails both conditions for linearity. E.g., $C(\alpha \vec{x})=C(\alpha \vec{u}, \alpha \vec{v})=(\alpha \vec{u}) \times(\alpha \vec{v})=\alpha^{2}(\vec{u} \times \vec{v}) \neq \alpha(\vec{u} \times \vec{v})$.
b. [10 points] Is C onto? For $\vec{w} \in \mathbb{R}^{3}$, give a geometrical description of $C^{-1}(\{\vec{w}\})$.
C is onto: Let $\vec{u} \perp \vec{v}$ lie in the plane orthogonal to \vec{w} and let $(\vec{u}, \vec{v}, \vec{w})$ have the same orientation as $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$. Choose their lengths so that $|\vec{u}||\vec{v}|=|\vec{w}|$. Then $\vec{u} \times \vec{v}=\vec{w} . C^{-1}(\{\vec{w}\})$ is all pairs of vectors in the plane orthogonal to \vec{w} with this orientation and such that $|\vec{u}||\vec{v}| \sin \theta=|\vec{w}|$, where θ is the angle from \vec{u} to \vec{v}.

