Not Sudoku

We are going to make up our own multiplication tables for letters.* For example, instead of using 1 , we will write e for the quantity that doesn't change something when it multiplies it. ${ }^{\dagger}$ The rules are:

- For every g, e times g (which we write as $e g$) is g. Also, $g e=g$.
- For every g, there is some h so that $g h=e$ and also $h g=e$. (h might be the same as g.)
- So inside our tables, in each row no letter appears twice. Also, in each column no letter appears twice.
- Finally, multiplication is associative: $(f g) h=f(g h)$.

1. Fill in the blank space in this multiplication table, following the rules.
What is a times $a: a a=$?

x	e	a
e	e	a
a		e

2. Fill in the blank spaces in this multiplication table, following the rules.
What is $a a$?
What is $a b$?
What is ba?
What is abba?

x	e	a	b
e	e	a	b
a	a		
b	6		

[^0]3. Fill in the blank spaces in each of these 4 letter multiplication tables, following the rules:

x	e	a	b	c
e	e			
a		e		
b				e
c			e	

x	e	a	b	c
e	e			
a		e		
b			e	
c				e

4. Fill in the blank spaces in this 6 letter multiplication table, following the rules:

x	e	a	b	c	d	f
e	e					
a		e				
b			e			
c				e		
d						e
f					e	

What is $a b$?
What is ba?
What is $a b b a$?
What is cafe?

[^0]: * These are Cayley tables for finite groups.
 $\dagger e$ comes from "Einheit", which means "unit" in German.

