SAN DIEGO FRENCH \star AMERICAN SCHOOL
dmeyer@math.ucsd.edu

Let's say a set (un ensemble) of counting numbers has no additions if no two of the numbers in it add up to a third.* For example, $\{2,3,5\}$ has an addition since $2+3=5$. Also, $\{2,4\}$ has an addition since $2+2=4$ (you can add one of the numbers to itself). But $\{9,10,11\}$ has no additions since when you add any two of these numbers you get a number that is bigger than any in the set.

1. The Meyer family has 5 children with different ages, all less than 10. The set of their ages has no additions. The youngest child is 1 . What are the ages of the other four children?
2. The Kennedy family has 8 children with different ages, none older than 10 . The set of boy's ages has no additions and the set of girl's ages has no additions. Two of the boys are 4 and 5 . How old are the girls? How old are the boys?
3. The abbey church at St.-Valery-sur-Somme has a clock which rings only rarely (so as not to disturb the tranquility!). The hours at which it rings form a set of even numbers which have no additions, when counted on the clock (meaning, for example, $6+10=$ $4)$. What is the largest number of times it could ring each day?

[^0]
4. How many different sets with no additions can you make using only the numbers $\{1,2,3,4\}$?
5. How many different sets with no additions can you make using only the numbers $\{1,2,3,4,5\}$?
6. What do you think are the largest sets with no additions that you can make using the numbers $\{1, \ldots, 100\}$?

[^0]: * This is usually called a sum-free set (un ensemble sans somme).

