
1 October 2002
revised 1 November 2002

QUANTUM LEARNING SEMINAR
LECTURE 1: INTRODUCTION

David A. Meyer

Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Introduction

The topic of this seminar is quantum learning—an apparently well-studied subject:
searching on Google this morning (1 October 2002) for “quantum learning” returned more
than 1500 hits! There even seem to be two companies called Quantum Learning—one in
New Zealand and one in Canada. Our plan, however, is not to open a franchise, but rather
to explore the connections between quantum computing [1] and machine learning [2]. In
this introductory lecture we’ll survey some of these connections, leaving the details to be
worked out in subsequent lectures.

Motivation

Quantum computation is based on the idea that it might be possible to build a com-
puter that acts at the logical level according to quantum mechanical principles. There is
currently a great deal of effort being devoted to doing so [3]. The general question that
motivates this seminar is: What might we do with a quantum computer once one is built?

Much of the present excitement about quantum computing is due to the discovery that
certain problems appear to be easier to solve (in the computational complexity sense) on a
quantum computer than on a classical computer. The most famous example is FACTORING

which Shor’s quantum algorithm solves in time O(n2 log n log log n) [4]. The best classical
algorithm known for FACTORING is much slower, requiring time O

(
exp(cn1/3 log2/3 n)

)
[5]. FACTORING is important—its hardness is the basis for the security of standard public
key cryptosystems [6]—but for quantum computation to be of general interest there need
to be more problems for which it provides superior solutions. There are, however, only a
handful of quantum algorithms discovered to date. Grover’s search algorithm [7] is often
the only other one mentioned, and one can argue that all, or at least most known quantum
algorithms depend on the two techniques exploited by Shor and Grover: quantum fast
transforms and amplitude amplification [8], respectively.

c© David A. Meyer 2002 1

Introduction to quantum learning David A. Meyer

A mathematics/computer science challenge in this subject, therefore, is to develop
new quantum algorithms/techniques. For reasons that should be clearer by the end of this
introduction, and hopefully much clearer by the time some of the details have been worked
out, there may be inspiration to be drawn from classical results in machine learning [2].

Perhaps the first hints of this possibility appeared in several papers, by different
authors, on “quantum neural nets” and related topics [9]. Artificial neural nets (ANNs),
of course, constitute a class of methods/algorithms for certain kinds of learning problems.
(As the name implies, ANNs were originally inspired by biological neural systems, but
the mathematical models are abstractions not completely consistent with biology. An
interesting question is whether there is more inspiration to be drawn from biology, for
either classical or quantum algorithms.)

The challenge of finding new quantum algorithms inspired by results in machine learn-
ing and the question of what the right quantum version of ANNs is, provide general and
specific motivations for this seminar on quantum learning.

Learning problems

We begin with a brief introduction to classical learning. When we speak of learning,
we often mean that there is some task to be accomplished and the problem is to learn
what action to take given specific circumstances. Some examples include:

RESPONDING TO PAVLOV: input is ringing bell or not;
action is salivate or not;

DRIVING: lots of input (visual, auditory, sensorimotor, . . .);
actions include accelerate, brake, shift, turn, . . .;

PLAYING GO: input is board position;
action is next move.

In each case we can imagine that there is some function from inputs to best/correct outputs:

RESPONDING TO PAVLOV:

ring 7→ salivate
no ring 7→ don’t bother

DRIVING: a partial description is

red light 7→ stop
green light 7→ go

yellow light 7→ go faster

—as learned by Jeff Bridges in the movie Starman (1984)!

2

Introduction to quantum learning David A. Meyer

PLAYING GO:

go position 7→ move with highest positional value

For our purposes, learning is defined to be the process of approximating such a func-
tion, to which we will sometimes refer as the target. Notice that this means that learning
has been accomplished when almost correct actions are taken for most inputs. There is
no reference to “understanding”—that is, there is no Chinese Room argument [10]: once
Searle in his room has mastered the set of rules for correlating input Chinese character
strings to output Chinese character strings, he has learned to respond correctly to questions
in Chinese. Whether or not he “understands” Chinese is not our concern.

The space of all possible functions, from allowed inputs to allowed outputs, is very,
very large. When we program a classical computer to learn (and maybe when we learn,
ourselves), we define a hypothesis space, by specifying some restricted class of functions.
In the case of PLAYING GO, for example, we might decide to consider only positional
value functions depending on some, but not all, specific features of a position: areas of live
groups, ‘thickness’, etc. Then the problem of approximating the target function is reduced
to selecting the best approximation within this hypothesis space. Once a hypothesis space
has been specified, a learning process typically occurs via a sequence of inputs, outputs,
corrections, and adjustments, as shown in Figure 1.1. This has been drawn deliberately to
look like a control process for two reasons:

1. At some point we will want to implement quantum learning algorithms as se-
quences of gate operations, i.e., like an electronic circuit.

2. It may be interesting to determine how much this analogy with control theory
has been used in classical machine learning.

input x

evaluate
hypothesis fparameters

compute
goodness

f (x)

correct
output
given x

compute
parameter adjustment

Figure 1.1. A schematic for a typical learning process, formatted to look like a control process.

3

Introduction to quantum learning David A. Meyer

To summarize, there are four ingredients in machine learning:

type of inputs: presented examples, chosen examples, . . .
type of outputs: action, real function value, . . .
hypothesis space: parameterized subset of possible functions
learning algorithm: how to apply feedback, how to best approximate, . . .

We will be interested not in the mere existence of quantum learning algorithms, but in
quantum improvements: requiring fewer examples to learn, requiring less computation
time, or maybe even solving different problems. The first two of these measures of a
learning algorithm are called the sample complexity and the computational complexity,
respectively, in the branch of machine learning known as computational learning theory
[11]. To invoke this aspect of machine learning, we should probably call the topic of
this seminar “quantum computational learning”. This has the added benefit of connoting
machine rather than human learning, distinguishing our topic from the majority of those
1500 web pages!

Concept learning

The simplest nontrivial output space defines a restricted class of learning problems:

DEFINITION. A concept c is a map from inputs X to Z2 = {0, 1}.

A concept specifies a subset of the possible inputs, namely c−1(1). For example, c could
be the map that takes the value 1 when its argument is red. This map is equivalent
to the concept of “red”. Let N = |X|; n = log N is the number of bits necessary to
specify any particular input x. (Unless otherwise indicated, logarithms in these notes
are base 2.) There are 2N = 22n

possible concepts, which is way, way too many to
have any hope of approximating the target concept very well given only polynomially
many (in n) inputs/examples. A typical concept learning problem, therefore, reduces
this superexponential number of concepts by restricting the possible hypotheses to some
concept class. The problem is thus to search this (still very large) concept class for the best
hypothesis. In this simplified setting, Angluin formalized a model for learning [12], part
of which Servedio and Gortler noticed can be generalized easily to quantum computation
[13]:

DEFINITION. Concept learning from membership queries is the problem of identifying a
concept c from a concept class C, given a membership oracle (MO) that responds to a
query x ∈ X with MO(x) = c(x). That is, a membership oracle answers the question “Is
x ∈ c−1(1)?”.

Implicit in the idea of learning from membership queries is the idea that the learner
chooses the inputs about which to query the membership oracle. Like the adjustments to
the current hypothesis, adjustments to the query are a consequence of the feedback from
the oracle about previous queries. Figure 1.2 illustrates such active learning.

4

Introduction to quantum learning David A. Meyer

An example of concept learning

Consider the concept class

Gn = {ga : ZN → Z2 | a ∈ ZN and ga(x) = δxa},

where δxa = 1 if x = a and 0 otherwise. A particular concept ga should be thought of as
“the number a”; a is the only element in g−1

a (1). Since there are N = 2n possible values
for a, the number of possible hypotheses is N , much smaller than 2N , but still very large.

It is obvious, and easy to show, that learning from membership queries has O(N)
sample complexity. The following deterministic algorithm—formatted as in Figure 1.2—
solves the problem of identifying a target concept in Gn:

Algorithm DGn.
1. Select input x = 0.
2. Set hypothesis to gx.
3. Evaluate gx(x).
4. Query the membership oracle about x.
5. If gx(x) = MO(x) then output gx; stop, else adjust input by x ← x + 1; go to 2.

For x < a, 1 = gx(x) 6= MO(x) = ga(x) = 0, so x is incremented by 1 and the algorithm
loops. Once x = a, however, 1 = gx(x) = MO(x) = ga(a) = 1, so the conditional is
satisfied, the algorithm outputs ga and stops. This can take no more than N iterations,
each of which includes one query of the membership oracle.

It should be plausible that no classical learning algorithm can do better than this (in
the worst case). In fact, this concept learning problem has Ω(N) sample complexity; in
a subsequent lecture we will explain how to prove such a lower bound. Our immediate
concern, however, is to understand that we can interpret Grover’s algorithm as a quantum
learning algorithm for this problem.

As we noted above, the membership oracle computes ga(x) when it is queried about
x and the target concept is ga. Implemented in a digital computer, we might use a data
structure consisting of an n bit ‘query’ register and a 1 bit ‘response’ register. Then the
membership oracle would act by

(x, b) 7→ (
x, b + ga(x)

) ∈ ZN × Z2,

where + should be interpreted mod 2, and we would set b = 0 for simplicity.

Rather than using the deterministic Algorithm DGn, we can imagine using a proba-
bilistic algorithm, again in the format of Figure 1.2:

Algorithm PGn.
0. Set X = ZN .
1. Select input x ∈ X uniformly at random.

5

Introduction to quantum learning David A. Meyer

2. Set hypothesis to gx.
3. Evaluate gx(x).
4. Query the membership oracle about x.
5. If gx(x) = MO(x) then output gx; stop, else adjust X ← X \ {x}; go to 1.

Using the data structure described in the previous paragraph, at the time of the first query
to the membership oracle, the state of a classical computer running this probabilistic
algorithm is (x, 0) with probability 1/N , for each x ∈ ZN . That is, the state of the
computer is described by the vector (1/N, . . . , 1/N, 0, . . . , 0) ∈ R2N , in the basis defined
by the 2N possible states: (0, 0), . . . , (N − 1, 0), (0, 1), . . . , (N − 1, 1), in that order, so the
components of the vector are the probabilities of each. Writing (x, b) for the corresponding
unit basis vector, this probability vector is

∑
x

1
N

(x, 0) (1.1)

and querying the membership oracle transforms it to the vector

∑
x

1
N

(
x, ga(x)

)
=

1
N

(a, 1) +
∑
x6=a

1
N

(x, 0).

In general, we can describe the state of the probabilistic computer at each timestep by a
unit `1-norm non-negative vector in R2N . Each iteration of Algorithm PGn adjusts this
probability vector. E.g., after the second query the state is

2
N

(a, 1) +
∑
x6=a

1
N

(
1 − 1

N − 1

)
(x, 0),

where we have added the probability of stopping after the first query to the probability of
the basis vector (a, 1). Algorithm PGn also runs in time O(N).

Quantum states and evolution

Once we accept that the state of a classical computer running a probabilistic algo-
rithm can be described by a unit `1-norm non-negative vector in R2N , there are only two,
apparently small steps to quantum computing. First, the state of the quantum computer is
a unit `2-norm vector in C2N (for this example problem). Second, the evolution from one
state to the next is via multiplication by a unitary matrix. Then the quantum analogue
of Algorithm PGn would create a state

∑
x

1√
N

|x, b〉

with which to query the membership oracle, which will return

∑
x

1√
N

|x, b + ga(x)〉.

6

Introduction to quantum learning David A. Meyer

Here the classical register states (x, b) again label a basis, now of C2N . Following standard
physics notation, we denote them by asymmetrical brackets |x, b〉 to distinguish them from
the corresponding elements 〈x, b| of the dual space. The membership oracle mapping
|x, b〉 7→ |x, b + ga(x)〉 extends by linearity to a unitary map since it acts as a permutation
on the basis vectors. In fact, the data structure is designed so that the membership oracle
acts via multiplication by a unitary matrix, and hence is an allowed step in a quantum
algorithm.

References

[1] A good general reference is M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge: Cambridge University Press 2000)

[2] For the computer science perspective see, e.g., T. M. Mitchell, Machine Learning (San
Francisco: McGraw-Hill 1997);
for a recent mathematical perspective see F. Cucker and S. Smale, “On the mathe-
matical foundations of learning”, Bull. Amer. Math. Soc. 39 (2002) 1–49.

[3] See, e.g., the special issue of Fortsch. Phys. 48 no. 9–11 (2000).
[4] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factor-

ing”, in S. Goldwasser, ed., Proceedings of the 35th Symposium on Foundations of
Computer Science, Santa Fe, NM, 20–22 November 1994 (Los Alamitos, CA: IEEE
Computer Society Press 1994) 124–134;
P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer”, SIAM J. Comput. 26 (1997) 1484–1509.

[5] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, “The number field
sieve”, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, MD, 14–16 May 1990 (New York: ACM Press 1990) 564–572;
A. K. Lenstra and H. W. Lenstra, Jr., eds., The Development of the Number Field
Sieve, Lecture Notes in Mathematics, vol. 1554 (New York: Springer-Verlag 1993).

[6] R. L. Rivest, A. Shamir and L. M. Adleman, “A method of obtaining digital signatures
and public-key cryptosystems”, Commun. ACM 21 (1978) 120–126.

[7] L. K. Grover, “A fast quantum mechanical algorithm for database search”, in Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, PA, 22–24 May 1996 (New York: ACM 1996) 212–219;
L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack”,
Phys. Rev. Lett. 79 (1997) 325–328.

[8] L. K. Grover, “A framework for fast quantum algorithms”, in Proceedings of 30th
Annual ACM Symposium on Theory of Computing (New York: ACM 1998) 53–62;
G. Brassard, P. Hoyer and A. Tapp, “Quantum counting”, quant-ph/9805082.

[9] R. L. Chrisley, “Quantum learning”, in P. Pylkkänen and P. Pylkko, eds., New Direc-
tions in Cognitive Science, Proceedings of the International Symposium, Saariselka,
Finland, 4–9 August 1995 (Helsinki: Finnish AI Society 1995) 77–89;
D. Ventura and T. Martinez, “An artificial neuron with quantum mechanical proper-
ties”, Proceedings of the International Conference on Artificial Neural Networks and
Genetic Algorithms, Norwich, England, April 1997, 482–485;

7

Introduction to quantum learning David A. Meyer

E. C. Behrman, J. E. Steck and S. R. Skinner, “A spatial quantum neural computer”,
IJCNN’99, vol. 2, Proceedings of the International Joint Conference on Neural Net-
works, Washington, DC, 10–16 July 1999 (Piscataway, NJ: IEEE 1999) 874–877.

[10] J. Searle, “Minds, brains, and programs”, Behavioral and Brain Sciences 3 (1980)
417–424.

[11] See, e.g., D. Angluin, “Computational learning theory: Survey and selected bibliog-
raphy”, in Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing (New York: ACM 1992) 351–369.

[12] D. Angluin, “Queries and concept learning”, Machine Learning 2 (1988) 319–342.
[13] R. A. Servedio and S. J. Gortler, “Quantum versus classical learnability”, in Proceed-

ings of the Sixteenth IEEE Conference on Computational Complexity (Los Alamitos,
CA: IEEE 2000) 138–148.

8

