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Introduction

Grover’s algorithm [1] is a quantum analogue of a Markovian version of Algorithm
P. As we will see in this lecture, it requires only O(

√
N) membership queries. This is

a quantum improvement in sample complexity for this problem of concept learning from
membership queries. The geometrical description of Grover’s algorithm presented here was
originally noticed by several people, independently [2].

The query state

Rather than preparing the obvious quantum analogue of the initial probability vector
(1.1) in Algorithm P, namely ∑

x

1√
N

|x, 0〉

(recall that quantum states have unit `2-norm), Grover’s algorithm works by preparing a
more subtle quantum state:

∑
x

( 1√
2N

|x, 0〉 − 1√
2N

|x, 1〉
)

=
∑

x

1√
N

|x〉 1√
2
(|0〉 − |1〉). (2.1)

The notation here takes advantage of the fact that C2N = CN ⊗ C2, so the basis vectors
|x, b〉 = |x〉 ⊗ |b〉, where {|x〉 | x ∈ ZN} and {|b〉 | b ∈ Z2} are orthogonal bases for the
tensor factors CN and C2, respectively. We use the additional notational simplification
that |x〉|b〉 = |x〉 ⊗ |b〉; i.e., we will often omit the tensor product symbol when writing
vectors.
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Membership oracle geometry

Querying the membership oracle with the quantum computer in the state (2.1) trans-
forms the state to

∑
x

1√
N

|x〉 1√
2
(|0 + ga(x)〉 − |1 + ga(x)〉) =

∑
x

1√
N

|x〉(−1)ga(x) 1√
2
(|0〉 − |1〉)

=
(∑

x

1√
N

|x〉(−1)ga(x)
)
⊗ 1√

2
(|0〉 − |1〉),

since |0〉 − |1〉 goes to |0〉 − |1〉 when ga(x) = 0 and to |1〉 − |0〉 = −(|0〉 − |1〉) when
ga(x) = 1. Grover’s algorithm is organized so that the last tensor factor is unchanged by
the evolution. Thus we can understand the action of querying the membership oracle as a
reflection of the first tensor factor of the state vector in the hyperplane orthogonal to the
basis vector |a〉 ∈ CN—the only change is to the component of |a〉, which is negated.

Figure 2 shows the (real) subspace of CN spanned by |a〉 and
∑

x |x〉/
√

N . The
intersection of the hyperplane orthogonal to |a〉 with this plane is the red line; the angle
θ between it and the initial state satisfies sin θ = 1/

√
N . Querying the membership oracle

reflects the state vector in this plane, as shown.

Geometry of Grover’s algorithm

Just as in Algorithms D and P of Lecture 1, after the membership oracle responds, the
state of the computer should be adjusted, before being returned to the oracle. In a quantum
computer, this adjustment must be unitary, as well as independent of the oracle. As shown
in Figure 2, a natural choice is to reflect in the hyperplane orthogonal to

∑
x |x〉/

√
N , the

intersection of which with the subspace shown is the green line. Reflecting the post-query
state in this hyperplane produces the vector shown; the angle between (the negative of)
this vector and the initial vector is 2θ since the product of two reflections is a rotation by
twice the angle between the hyperplanes.

A second iteration: sending the state vector to the membership oracle—equivalently,
reflecting in the red hyperplane—and then reflecting in the green hyperplane, rotates the
state vector by another 2θ towards |a〉. Grover’s algorithm works by repeating this pair of
reflections k times, where k is the smallest positive integer approximate solution to

θ + k · 2θ =
π

2

since the state vector then is close to |a〉. That is,

k =
⌊ π

4θ
− 1

2

⌉
∼ π

4

√
N as N → ∞.

Here b·e denotes “closest integer to”.
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Figure 2. The first iteration of Grover’s algorithm consists of reflecting the initial equal

superposition vector in the (red) hyperplane orthogonal to |a〉 and then reflecting it in the
(green) hyperplane orthogonal to the equal superposition vector. Each subsequent iteration

consists of the same two reflections, and each rotates the state by 2θ towards |a〉, where sin θ =

1/
√

N .

Measurement

The last stage of Grover’s algorithm is to measure the state vector. Let us not worry
about how to implement a measurement; we’ll just take the following definition as a correct
description of quantum mechanics.

DEFINITION. A projective (or von Neumann [3]) measurement on CN is defined by a choice
of orthonormal basis {|φj〉 | j ∈ ZN}. The outcome of each measurement is probabilistic:
when the state is |ψ〉 ∈ CN , it is |φj〉 with probability |〈φj |ψ〉|2.

Since after k iterations the state vector is within an angle θ of |a〉, the probability
that the outcome of measurement in a basis including |a〉 is |a〉, is

|〈a|ψ〉|2 ≥ 1 − sin2 θ = 1 − 1
N

,

which is asymptotically 1. Thus Grover’s algorithm learns ga with probability close to 1
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using O(π
4

√
N) membership queries, quadratically fewer than the classical algorithms D

and P, and in fact, quadratically fewer than is possible classically.
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