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Introduction

As we noted in the first lecture, quantum computation is a relatively young subject,
and quantum learning is even younger. The goal of this lecture is to explain that there is
a conjecture about quantum learning dating back to ’93. That is, 1893!

CONJECTURE (Hadamard [1]): For N ≡ 0 mod 4 there is a concept class of size N such
that quantum learning from membership queries has sample complexity 1.

Concept classes

In the last two lectures we introduced the concept class

Gn = {ga : ZN → Z2 | a ∈ ZN and ga(x) = δxa},

and found that Grover’s algorithm [3] provides a learning algorithm with sample complexity
O(

√
N) for concepts in Gn. Figure 3.1 shows a typical concept in Gn for the case N = 8

(n = 3).

Now consider a different concept class:

BVn = {fa : Zn
2 → Z2 | a ∈ Zn

2 and fa(x) = a · x mod 2},

(named after Bernstein and Vazirani who first investigated this set in the context of quan-
tum computing [4]). Figure 3.2 shows the first four concepts in BV3. Notice that except
for a = 0, |f−1

a (1)| = N/2, in contrast to Grover concepts each of which contains exactly
1 element. There are still N = 2n concepts in BVn, just as there are in Gn. It is easy to
see, however, that the classical complexity of learning from BVn is O(log N). A learning
algorithm can exploit the structure of BVn, which is best illustrated not by graphing the
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concepts as in Figure 3.2, but as in Figure 3.3 where the possible inputs are the vertices
of a (hyper)cube. The membership oracle need only be queried about the n basis vectors
of Zn

2 . A deterministic algorithm that does this, in the format of Figure 1.2 is

Algorithm DBVn.
0. Set X ← Zn

2 .
1. Set x ← 1 = 0 . . . 01 ∈ Zn

2 .
2. While x < 2n,

2a. Set hypothesis to fx.
2b. Evaluate fx(x).
2c. Query the membership oracle about x.
2d. If fx(x) = MO(x) then adjust X ← X ∩ f−1

x (1) else adjust X ← X ∩ f−1
x (0).

2e. Adjust x ← 2x.
3. Set {x} ← X; output fx.

This algorithm identifies the bits of a one by one, reducing the set X of possible as by
half as each bit is identified. After n iterations of step 2, X consists of a single element,
a, which determines the concept learned, fa.

Quantum learning

Classically BVn is a much easier concept class from which to learn than is Gn. This
is also true quantum mechanically: The first step is to prepare the same query state
(1.1) as in Grover’s algorithm. Submitting it to the membership oracle causes the unitary
transformation:

∑
x

1√
N

|x〉 1√
2
(|0〉 − |1〉) 7→

∑
x

1√
N

|x〉(−1)fa(x) 1√
2
(|0〉 − |1〉)

=
∑

x

1√
N

|x〉(−1)a·x 1√
2
(|0〉 − |1〉). (3.1)

The first tensor factor of the resulting vector is one of N = 2n different vectors, depending
on the concept fa. For N = 8 they are the columns of the matrix

A =
1√
8




a = 000 001 010 011 100 101 110 111

+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −




, (3.2)

where + and − denote +1 and −1, respectively.
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It is easy to check that the columns of A are orthogonal for any N : A†A = I. Thus
these vectors define an orthonormal basis and hence, according to the definition from the
previous lecture, a projective measurement on CN . Since the first tensor factor on the
right hand side of (3.1) is exactly one of these basis vectors (depending on the concept
fa), a projective measurement in this basis will observe a with probability 1. Thus, for
concepts in BVn, the sample complexity of quantum learning from membership queries is
1.

Hadamard matrices

This is clearly equally true for any concept class consisting of concepts that are or-
thogonal in the sense that the matrix corresponding to (3.2) is orthogonal. The first part
of the following definition is standard; the second part may not be.

DEFINITION. An N × N matrix H with elements in {±1} that satisfies HTH = NI (and
consequently also HHT = NI) is called a Hadamard matrix. Correspondingly, if a concept
class C of maps X → Z2 satisfies

∑
x∈X

(−1)c(x)(−1)c′(x) = 0

for all c 6= c′ ∈ C, we will call C a Hadamard concept class.

It is an immediate consequence of our definitions that any Hadamard concept class
has sample complexity 1 for quantum learning from a membership oracle. As we will see in
a subsequent lecture, the classical sample complexity is Ω(log N), as it is for BVn. These
statements are only interesting, of course, if there are Hadamard concept classes other
than the family BVn. These are not so easy to find, but mathematicians have been looking
for the corresponding Hadamard matrices since 1867 when Sylvester discovered the family(

+
+

+
−

)⊗n [5]—corresponding to BVn. Some time afterwards Hadamard proved:

THEOREM (Hadamard [2]). If H is an N × N Hadamard matrix, then N ∈ {1, 2} or
N ≡ 0 mod 4.

Proof. Multiplying any row or column by −1 leaves a Hadamard matrix Hadamard.
By doing so appropriately we can change the first row and first column to all +1s; a
Hadamard matrix in this form is called normalized. Permuting the columns of a Hadamard
matrix also leaves it Hadamard. Thus we can arrange the columns so that the first three
rows have the form

+ −−−−−−−−−−−−−−−−−−−−−−− +
+ −−−−−−−−− +− −−−−−−−−− −
+ −−− +︸ ︷︷ ︸

i +s

− −−− −︸ ︷︷ ︸
j −s

+ −−− +︸ ︷︷ ︸
k +s

− −−− −︸ ︷︷ ︸
l−s
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Since these rows are mutually orthogonal,

i + j − k − l = 0
i − j + k − l = 0
i − j − k + l = 0,

which implies i = j = k = l. Thus N = 4k, if N ≥ 3.

This result suggested the conjecture with which we started this lecture; the standard
phrasing, of course, is:

CONJECTURE (Hadamard [1]). There is an N ×N Hadamard matrix for all N ≡ 0 mod 4.

This conjecture is sometimes attributed to Paley [6], but in 1893 Hadamard wrote:
“J’ai formé des déterminants réels pour n = 12 et n = 20, sans avoir pu néanmoins
reconnâıtre d’une façon certaine s’il en existe chaque fois que n est divisible par 4.” [1], so
it is clear that he thought it might be true. As of 2002, the smallest multiple of 4 for which
no Hadamard matrix is known is N = 428 [7]. Since the Sylvester matrix

(
+
+

+
−

)⊗n has
dimension 2n, this implies that there must be other ways to contruct Hadamard matrices.
We describe the simplest, which produces the N = 12 matrix found by Hadamard (I
haven’t checked his example for N = 20.), as the smallest of an infinite family of matrices
different from the Sylvester matrices, next.

Paley’s construction

We begin with some number theoretic preliminaries. Let p > 2 be a prime number.

DEFINITION. Let 0 < a ∈ Z. The elements of {a2 mod p} are called quadratic residues
mod p.

To compute the number of quadratic residues, note that since

(a + p)2 = a2 + 2ap + p2 ≡ a2 mod p,

we need only consider 0 ≤ a < p. Furthermore, since

(p − a)2 = p2 − 2pa + a2 ≡ a2 mod p,

we need only consider 0 ≤ a ≤ p−1
2 . But 12, 22, . . . ,

(
p−1
2

)2 mod p are all distinct since

a2 ≡ b2 mod p =⇒ p|a2 − b2 = (a + b)(a − b)
=⇒ a = b.

Therefore there are p−1
2 quadratic residues mod p. The other p−1

2 nonzero elements of Zp

are called nonresidues. 0 is neither a residue nor a nonresidue.
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DEFINITION. The Legendre symbol is defined to be

(a

p

)
=

{ +1 if a is a residue;
−1 if a is a nonresidue;
0 if a = 0.

DEFINITION. For p ≡ −1 mod 4, the Jacobsthal matrix is the p×p matrix Q with elements
qij =

(
j−i
p

)
, for i, j ∈ {0, . . . , p − 1}.

EXAMPLE. For p = 11,

Q =




0 + − + + + − − − + − −
− 0 + − + + + − − − + −
− − 0 + − + + + − − − +
+ − − 0 + − + + + − − −
− + − − 0 + − + + + − −
− − + − − 0 + − + + + −
− − − + − − 0 + − + + +
+ − − − + − − 0 + − + +
+ + − − − + − − 0 + − +
+ + + − − − + − − 0 + −
− + + + − − − + − − 0 +
+ − + + + − − − + − − 0




.

Notice that QT = −Q. This is true for every Jacobsthal matrix; it is a consequence of the
Legendre symbol being a character. Another consequence is that

QQT = −Q2 = pI − 11T ,

where 1 is the p × 1 vector of all +1s.

Now let H be the p + 1 × p + 1 matrix:

H =
(

1 1T

1 Q − I

)
. (3.3)

This is Paley’s (Type I) construction [6], which was apparently discovered by Gilman a
few years earlier [8]. It produces a Hadamard matrix, since

HHT =
(

p + 1 0T

0 11T + (Q − I)(Q − I)T

)
,

where 0 is the p × 1 zero vector. The lower right block is

11T + QQT − QT − Q + I = 11T + pI − 11T + I = (p + 1)I,
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where we have used the two facts about Jacobsthal matrices noted in the Example above.
Thus HHT = (p + 1)I, which means H is a Hadamard matrix.

The p = 11 Jacobsthal matrix of the Example above produces the unique 12 × 12
Hadamard matrix by this construction. For p = 3 and p = 7, Paley’s/Gilman’s construc-
tion reproduces the 4× 4 and 8× 8 Sylvester matrices. For p = 31, however, it produces a
32× 32 Hadamard matrix that is distinct from the 32× 32 Sylvester matrix. The number
of distinct Hadamard matrices is known currently only up to N = 28 [9]:

N = 1 2 4 8 12 16 20 24 28
# = 1 1 1 1 1 5 3 60 487

Each distinct Hadamard matrix defines a Hadamard concept class in which quantum learn-
ing with access to a membership oracle succeeds with sample complexity 1. The concept
class BVn corresponding to the 2n × 2n Sylvester matrices consists of concepts of the form
“numbers x such that x · a = 1 mod 2”. If the rows and columns of (3.3) are labelled
from 0 to p, the corresponding concept class is “numbers x such that x 6= 0 and x − a is
a square mod p for a 6= 0”. In a paper that inspired this lecture, van Dam has combined
the Paley/Gilman construction and Paley’s (Type II) construction for primes p ≡ 1 mod 4
into the Shifted Legendre Symbol problem and proved that it has sample complexity 2
[10].
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