Math 100A, Problem Set 3. Due Friday October 25.

1. Solve Problem 21 (a)(b), Section 1.4.

2. Solve the following modified version of Problem 26, Section 1.4, which is a followup of Problem 4 on the Midterm.
 (i) If \(\gamma = (a_1 a_2 \ldots a_\ell) \) is a cycle of length \(\ell \), show that
 \[\tau \gamma \tau^{-1} = (\tau(a_1) \, \tau(a_2) \ldots \tau(a_\ell)). \]
 (ii) Show that for any cycles \(\gamma_1, \gamma_2 \) of length \(\ell \) we can find a permutation \(\tau \) such that
 \[\tau \gamma_1 \tau^{-1} = \gamma_2. \]
 We say that any two cycles of length \(\ell \) are conjugate.

3. (i) For \(1 < i < j \leq n \) show the following identity holds in \(S_n \):
 \[(i \, j) = (1 \, i)(1 \, j)(1 \, i). \]
 (ii) Show that any permutation in \(S_n \) can be written as product of transpositions chosen among
 \((1 \, 2), (1 \, 3), \ldots, (1 \, n) \).

4. (i) Show that any permutation in \(S_n \) can be written as product of transpositions chosen among
 \((1 \, 2), (2 \, 3), \ldots, (n - 1 \, n) \).
 (ii) Let
 \[\sigma = (1 \, 2 \ldots n). \]
 Use 3(ii) to show that
 \[\sigma(i - 1 \, i) \sigma^{-1} = (i \, i + 1). \]
 Conclude from (iii) that any permutation in \(S_n \) can be written as product of the three permutations \(\sigma, \sigma^{-1}, \tau = (1 \, 2) \).

5. Section 2.2, Problem 1.

6. Section 2.2, Problem 7. The group introduced in this problem is called the Heisenberg group named after the physicist Werner Heisenberg.
7.

(i) Let G denote the set of matrices

$$ G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \text{ where } a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1 \right\}. $$

Show that G is a group under matrix multiplication. This group is denoted $SL_2(\mathbb{Z})$.

Hint: The issue here is to observe that inverses have integer entries. You should write down the inverse matrix explicitly.

(ii) Let n be an integer, and let G denote the set of matrices

$$ G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \text{ where } a, b, c, d \in \mathbb{Z}_n \text{ and } ad - bc = 1 \text{ in } \mathbb{Z}_n \right\}. $$

Show that G is a group under matrix multiplication. This group is denoted $SL_2(\mathbb{Z}_n)$.

(iii) Let G denote the set of matrices

$$ G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \text{ where } a, b, c, d \in \mathbb{Z}_2 \text{ and } ad - bc = 1 \text{ in } \mathbb{Z}_2 \right\}. $$

List all elements of G. Show that G has 6 elements.