Math 100A - Fall 2019 - Practice Problems for Midterm II

The midterm will cover Chapters 2.1 - 2.5 in the book. The main topics are:

- binary laws, groups, basic properties, examples
- subgroups, center, centralizer, normal subgroups
- order of elements, properties of order, order of permutations, cyclic groups, subgroups of cyclic group
- homomorphisms, isomorphisms, examples, basic properties, kernel, image
- automorphisms, inner automorphisms

1. Please make sure to review the definitions and all proofs covered in class. You may be asked to define terms or prove a statement which is similar to theorems proved in class.

Also please review the homework problems.

2. (Binary laws, groups, isomorphisms.) Consider $G = \mathbb{Q} \setminus \{-1\}$ endowed with the binary law $a \star b = ab + a + b$.
 (i) Show that \star is a well-defined binary law on G.
 (ii) Show that (G, \star) is a group with 0 as identity.
 (iii) Show that (G, \star) is isomorphic to $(\mathbb{Q} \setminus \{0\}, \cdot)$

3. (Groups.) Show that if G is a group with an even number of elements, there exists $a \in G$, $a \neq e$ such that $a^2 = e$. You may wish to group elements in pairs (a, a^{-1}).

4. (Subgroups, normal subgroups.) Let H be a subgroup of a group G. The normalizer of H in G is defined as
 \[N_G(H) = \{ g \in G : gHg^{-1} = H \}. \]
 (i) Show that $N_G(H)$ is a subgroup of G.
 (ii) Show that H is normal if and only if $N_G(H) = G$.

5. (Subgroups.) If X is a subset of a group G, define
 \[\langle X \rangle = \{ x_1^{k_1} \cdots x_m^{k_m} : x_i \in X, k_i \in \mathbb{Z}, m \geq 1 \}. \]
 (i) Show that $\langle X \rangle$ is a subgroup of G.
 (ii) Show that if $G = \langle X \rangle$ and $xy = yx$ for all $x, y \in X$ then G is abelian.

6. (Normal subgroups.) Show that $H = \{1, \sigma, \sigma^2\}$ is a normal subgroup of $G = S_3$. There are two ways of solving this problem. One involves direct verification (which is tedious and I won’t recommend).
A second method is based on a general argument. If \(g \in G \setminus H \), show that \(H \) and \(gH \) are disjoint. Similarly show that \(H \) and \(Hg \) are disjoint. Comparing the number of elements of \(G \), \(H \), \(gH \) and \(Hg \) conclude that \(Hg = gH \) so that \(H \) is normal.

7. (Order of permutations.) Find the smallest integer \(n \) such that \(\sigma^n = \epsilon \) for all \(\sigma \in S_6 \).

8. (Cyclic groups and their subgroups.) Let \(G = \langle g \rangle \) be a finite cyclic group of order \(n \). Show that if \(a \mid n \) and \(b \mid n \) then \[
\langle g^a \rangle \cap \langle g^b \rangle = \langle g^c \rangle
\]
where \(c \) is the least common multiple of \(a, b \).

9. (Order of elements.) Let \(g \in G \) be an element of order \(m \), and let \(h \in H \) be an element of order \(n \). Find the order of the element \((g, h) \) in \(G \times H \).

10. (Automorphisms.) If \(G \) is an infinite cyclic group, find \(\text{Aut}(G) \).

11. (Isomorphisms. Order.) Exhibit, with proof, three nonisomorphic groups of order 27.

12. (Cyclic groups, their subgroups. Automorphisms.)
 (i) For \(n = p_1^{a_1} \cdots p_k^{a_k} \) with \(p_i \) prime, find the number of subgroups of \(C_n \).
 (ii) Draw the lattice of subgroups of \(C_{p^2q^2} \), where \(p, q \) are prime.
 (iii) Find the number of automorphisms of \(C_{12} \).

13. (Inner automorphisms.) Show that if \(Z(G) = \{1\} \), then \(G \simeq \text{Inn}(G) \).