1. Show directly from the definition that
\[\sin(2z) = 2 \sin z \cos z \]

Solution:
\[\sin(2z) = \frac{e^{2zi} - e^{-2zi}}{2i} = 2 \frac{(e^{zi} - e^{-zi})}{2i} \frac{e^{zi} + e^{-zi}}{2} = 2 \sin z \cos z \]

2. Write the following complex numbers in standard form:
 (i) \((-1 + i\sqrt{3})^i\). What is the principal value?
 (ii) \(\tan^{-1}(2i)\),
 (iii) \(\tan\left(\frac{i\pi}{2}\right)\),
 (iv) solve the equation \(\sin z = 2\).

Solution:
 (i) \((-1 + i\sqrt{3})^i = e^{i(\ln(2) + i(\frac{2\pi}{3} + 2n\pi))} = e^{-\frac{2\pi}{3} + 2n\pi} \cos(\ln 2) + ie^{-\frac{2\pi}{3} + 2n\pi} \sin(\ln 2)\).
 P.V. \((-1 + i\sqrt{3})^i = e^{-\frac{2\pi}{3}} \cos(\ln 2) + ie^{-\frac{2\pi}{3}} \sin(\ln 2)\).
 (ii) \(\tan^{-1}(2i) = z \iff \tan(z) = 2i \iff \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = -2 \iff e^{iz} - e^{-iz} = -2e^{iz} - 2e^{-iz} \iff e^{-iz} = -3e^{iz} \iff e^{-2iz} = -3 \iff z = -\frac{\pi}{2} + \frac{i \ln 3}{2} + n\pi\).
 (iii) \(\tan\left(\frac{i\pi}{2}\right) = \frac{e^{i\left(\frac{i\pi}{2}\right)} - e^{-i\left(\frac{i\pi}{2}\right)}}{i(e^{i\frac{i\pi}{2}} + e^{-i\left(\frac{i\pi}{2}\right)})} = i \cdot \frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{e^{\frac{\pi}{2}} + e^{-\frac{\pi}{2}}}\).
 (iv) \(\sin z = 2 \iff e^{iz} - e^{-iz} = 4i \iff w - \frac{1}{w} = 4i, \text{ with } w = e^{iz} \iff w^2 - 4iw - 1 = 0 \iff w = (2 \pm \sqrt{3})i \iff e^{iz} = (2 \pm \sqrt{3})e^{\frac{\pi}{2}} \iff z = \frac{\pi}{2} + 2k\pi + i\ln(2 \pm \sqrt{3})\).
3. Evaluate the following integrals by parametrizing the contour:
 (i) \(\int_C x\,dz \) where \(C \) is the oriented line segment joining 1 to \(i \),
 (ii) \(\int_C (z - 1)\,dz \) where \(C \) is the semicircle joining 0 to 2,
 (iii) \(\int_C \cos(\frac{z}{2})\,dz \) where \(C \) is the line segment joining 0 to \(\pi + 2i \).

Solution:
 (i) Parametrize the contour by \(z = (i - 1)t + 1 \) with \(0 \leq t \leq 1 \). Then
 \[
 \int_C x\,dz = \int_0^1 (1 - t)(i - 1)\,dt = \frac{i - 1}{2}.
 \]
 (ii) Using the parametrization \(z = 1 + e^{-i\theta}, \quad -\pi \leq \theta \leq 0 \), \(dz = -ie^{-i\theta}\,d\theta \),
 we compute
 \[
 \int_C (z - 1)\,dz = \int_{-\pi}^0 e^{-i\theta} (-ie^{-i\theta})\,d\theta = -i \int_{-\pi}^0 e^{-2i\theta}\,d\theta = \frac{1}{2}e^{-2i\theta} \bigg|_{\theta=-\pi}^{\theta=0} = 0.
 \]
 (iii) Writing \(z = (\pi + 2i)t \) for \(0 \leq t \leq 1 \), we compute
 \[
 \int_C \cos(\frac{z}{2})\,dz = \frac{\pi + 2i}{2} \int_0^1 e^{i(\frac{\pi}{2}+i)t} + e^{-i(\frac{\pi}{2}+i)t}\,dt = -i \left(e^{i(\frac{\pi}{2}+i)t} - e^{-i(\frac{\pi}{2}+i)t}\right) \bigg|_{t=0}^{t=1} = e + e^{-1}.
 \]

4. Evaluate
 \[
 \int_C z^{-1+i}\,dz
 \]
 where \(C \) is the positively oriented unit circle, and the integrand is defined by choosing the branch
 \(0 < \arg(z) < 2\pi \).
 What happens if we take \(-\pi < \arg(z) < \pi \)?

 Solution: For \(z = e^{i\theta} \), we have
 \[
 \int_C z^{-1+i}\,dz = \int_0^{2\pi} e^{i\theta(i-1)} \cdot ie^{i\theta}\,d\theta = i \int_0^{2\pi} e^{-\theta}\,d\theta = i(1 - e^{-2\pi}).
 \]
 If we take \(-\pi < \arg(z) < \pi \) we’ll get \(i(e^\pi - e^{-\pi}) \).

5. Compute
 \[
 \int_C z^a\,dz
 \]
 where \(C \) is the counterclockwise unit circle and \(a \) is any real number. The principal value is used for the integrand. Do it in two ways: by picking a parametrization of \(C \), and by using a suitable anti-derivative.
Solution: Let $z = e^{i\theta}$. If $a \neq -1$, we have

\[\int_C z^a \, dz = \int_{-\pi}^{\pi} e^{ia\theta} \cdot ie^{i\theta} \, d\theta = \frac{e^{i\pi(a+1)} - e^{-i\pi(a+1)}}{a+1} = \frac{2i}{a+1} \sin((a+1)\pi). \]

If $a = -1$, then

\[\int_C z^{-1} \, dz = \int_{-\pi}^{\pi} i \, d\theta = 2\pi i. \]

For the second method, let us assume first $a \neq -1$. Note that the principal value of $z^a = e^{a\log z}$ is undefined at the negative reals. To compute the integral, we will split the circle into the upper and lower halves. For the integral across the upper half C_1, we will replace z^a by a different branch which is everywhere defined and holomorphic. We pick a branch cut which doesn’t cross C_1, for instance

\[-\frac{\pi}{2} < \arg(z) < \frac{3\pi}{2}.

This branch of z^a agrees with the principal branch along C_1. Then,

\[\int_{C_1} z^a \, dz = \frac{e^{(a+1)\log(z=-1)} - e^{(a+1)\log(z=1)}}{a+1} = \frac{e^{\pi i(a+1)} - 1}{a+1} \]

For the integral along C_2, we may branch cut along a half-line which avoids C_2, for instance

\[-\frac{3\pi}{2} < \arg(z) < \frac{\pi}{2}. \]

The values of z^a for this branch coincide with the principal values along C_2. We evaluate

\[\int_{C_2} z^a \, dz = \frac{e^{(a+1)\log(z=1)} - e^{(a+1)\log(z=-1)}}{a+1} = \frac{1 - e^{-\pi i(a+1)}}{a+1}. \]

Putting things together

\[\int_C z^a \, dz = \frac{e^{\pi i(a+1)} - e^{-\pi i(a+1)}}{a+1} \]

just as before. The case $a = -1$ is done in similar way but using the antiderivative of $\frac{1}{z}$ which is $\log(z)$ and was done in class.

N.B. You should be careful when choosing your branch cut. It is especially easy to get a wrong answer when evaluating the integral along C_2. Picking a branch cut which avoids C_2 is not enough, you have to make sure that the chosen branch coincides with the principal value, so that you are not changing the integral. For instance the branch cut

\[\frac{\pi}{2} < \arg(z) < \frac{5\pi}{2} \]

would not work in this case. This is because this branch of z^a does not agree with the principal value along C_2. This can be seen, for instance, at the
point 1. There, the branch (2) gives the value $1^{a+1} = e^{2\pi i(a+1)}$ which differs from the principal value $1^{a+1} = 1$. However, you can convince yourself that the chosen branch (1) does work.

6. Show that

$$\int_{-1}^{1} z^i \, dz = \frac{(1 + e^{-\pi})(1 - i)}{2}$$

for any path joining -1 to 1 which lies above the real axis, endpoints excluded. The principal value is used for the integrand. Do it also for any path joining $-i$ and i which lies on the right of the imaginary axis.

Solution: Observe that the integrand does not exist at the endpoint $z = -1$. To fix this, let us consider a different branch cut along $-\pi < \arg(z) < 3\pi/2$.

The branch of z^i above agrees along the path of integration with the principal branch (except possibly at $z = -1$ where the latter is undefined). Therefore, we may safely work with the new branch considered above. Now, note that z^i has an antiderivative in the upper half plane given by

$$\frac{z^{i+1}}{i + 1}$$

where the new branch is used again in the definition of z^{i+1}. Therefore

$$\int_{-1}^{1} z^i \, dz = \frac{e^{(i+1)\log(z=1)} - e^{(i+1)\log(z=-1)}}{i + 1} = \frac{1 - e^{(i+1)(i\pi)}}{i + 1} = \frac{(1 + e^{-\pi})(1 - i)}{2}.$$

The integral along the second path causes no problems since the path does not intersect the branch cut at the negative reals. Therefore,

$$\int_{-i}^{i} z^i \, dz = \frac{e^{(i+1)\log(z=i)} - e^{(i+1)\log(z=-i)}}{i + 1} = \frac{e^{(i+1)i\pi} - e^{(i+1)-i\pi}}{i + 1} = \frac{(e^{-\pi} + e^{\pi})(i + 1)}{2}.$$

7. What are the values of the following integrals:

(i) $\int_C \frac{z^2}{z^2 - 3} \, dz$ where C is the positively oriented unit circle,

(ii) $\int_C \log(z + 2) \, dz$ where C is the positively oriented unit circle.

Solution: In both cases the integrands are holomorphic on and inside the unit circle so by Cauchy Theorem the integrals are 0. For the first function, the pole is at $z = 3$ which is clearly outside C. The second function is holomorphic everywhere except for the line $z = -2 + x$ with x is a negative real. This line also avoids the unit circle.
8. Determine the value of the integral
\[\int_C (z - 1)^n \, dz \]
where \(n \) is any integer and \(C \) is a positively oriented square of side \(a \), which doesn’t go through 1.

Solution: If 1 is not inside the square, the integral is 0 because \((z - 1)^n\) is holomorphic inside \(C \) no matter whether \(n \) is positive, negative or 0.

If 1 is inside the square, and \(n \geq 0 \) the same reasoning shows that the integral is 0.

So let us consider the case when \(n < 0 \), in which case the function \((z - 1)^n\) has a pole at \(z = 1 \). We can consider a small circle around 1 that lies inside the square. Since \((z - 1)^n\) is holomorphic in the area between the square and the circle, the integrals over these curves are equal. Consider parametrization of the circle \(z = 1 + re^{i\theta} \), where \(r \) is the radius. Then
\[
\int_C (z - 1)^n \, dz = r^{n+1} \int_0^{2\pi} e^{in\theta} \cdot ie^{i\theta} \, d\theta = \frac{2ir^{n+1}}{n+1} e^{i(n+1)\theta} \bigg|_{\theta=0}^{\theta=2\pi} = 0
\]
The case \(n = -1 \) is special since then the denominator becomes 0. The integral can be computed by hand to be \(2\pi i \).

9. Show that the area enclosed by a positively oriented simple closed curve \(C \) is given by
\[\frac{1}{2i} \int_C \bar{z} \, dz \]

Solution: We have
\[\int_C \bar{z} \, dz = \int_C (x - iy) \cdot (dx + idy) = \int_C (x \, dx + y \, dy) + i(x \, dy - y \, dx). \]
Let \(R \) be the region enclosed by \(C \). We can apply Green’s theorem to each of the two terms above to conclude
\[\int_C \bar{z} \, dz = \int \int_R 2i \, dx \, dy = 2\pi \text{ area (} R \text{)}. \]