Math 106 - Midterm 1.

The exam consists of 6 questions. Each page of the exam is worth 10 points. The maximum number of points is 50.

Name:

Acknowledgement and acceptance of honor code:

Signature:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td></td>
</tr>
<tr>
<td>Problem 5</td>
<td></td>
</tr>
<tr>
<td>Problem 6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 (10 points)

Write the following complex numbers in standard form $a + bi$:

(i) [5]

$$\exp \left(-1 + \frac{i\pi}{4} \right)$$

(ii) [5]

$$\frac{1 + 3i}{1 - 2i}$$
Problem 2 (10 points)

(i) [5] Determine the domain of definition of the function

\[f(z) = \frac{z^2 + 1}{z^2 - 16i}. \]

(ii) [5] Compute the derivative of the function

\[f(z) = \frac{z - 1}{2z + 1} \]

at \(z = -1 + \frac{i}{2} \).
Problem 3 (10 points)

True or false:

(i) [2] \(\sqrt{z} \) is an entire function.

(ii) [2] the complex numbers \(z \) with \(|z - 2 + 3i| = 1 \) form a line in the complex plane.

(iii) [2] a function \(f \) is holomorphic if and only if \(\frac{\partial f}{\partial \bar{z}} = 0 \).

(iv) [2] \(\lim_{z \to \infty} e^z = \infty \).

(v) [2] \(u(x, y) = x^3 + y^3 \) is harmonic.
Problem 4 (10 points)

Let \(u(x, y) = x - y + 2x^2 - 2y^2 \).

(i) [6] Check that \(u \) is harmonic. Find a holomorphic function \(f \) whose real part is \(u(x, y) \) and \(f(0) = 0 \).

(ii) [4] Write \(f \) as a function of \(z \) alone.
Problem 5 (5 points)

Using the Cauchy-Riemann equations verify that the function

\[f(x, y) = 2x^2 - 2y^2 + 2xy + i(-x^2 + y^2 + 4xy) \]

is entire.

Problem 6 (5 points)

Determine the 9th derivative of the function

\[f(z) = \exp \left((-1 + i\sqrt{3})z \right) \]

at \(z = 0 \).