Math 10C - Fall 2017 - Final Exam

Name: ________________________________

Student ID: __________________________

Section time: _________________________

Instructions:

Please print your name, student ID and section time.

During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be a page, front only.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 9 questions which are worth 105 points. You have 180 minutes to complete the test.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>
Problem 1. [12 points; 4, 4, 4.]
Consider the function

\[f(x, y) = 1 - x^2 - (y - 1)^2. \]

(i) Draw the level curve through the point \(P(1, 2) \). Find the gradient of \(f \) at the point \(P \) and draw the gradient vector on the level curve.

(ii) Draw the graph of \(f \) showing the level curve in (i) on the graph.
(iii) Explain why the function f admits a global minimum over the rectangle

$$0 \leq x \leq 2, \ -1 \leq y \leq 1.$$

Determine the minimum value and the point(s) where it occurs.
Problem 2. [12 points.]

Consider the integral
\[\int_0^4 \int_{\sqrt{y}}^{2} ye^{x^5} \, dx \, dy. \]

Draw the region of integration and then evaluate the integral by changing the order of integration.
Problem 3. [12 points; 5, 7.]

(i) Find the critical points of the function

\[f(x, y) = x^3 + 3xy - y^3. \]
(ii) Indicate the type of the critical points.
Problem 4. [12 points.]

Find the global minimum and global maximum of the function

\[f(x, y) = x^2 + 2y^2 - 2x - 8y + 9 \]

over the region

\[x^2 + 2y^2 \leq 36. \]
Problem 5. [10 points.]

Assume that
\[z = \sqrt{ye^x}, \quad x = u - uv, \quad y = \frac{u}{v}, \quad u = 3s + t, \quad v = t^2. \]

Compute \(\frac{\partial z}{\partial s} \) at the point where \(s = t = 1 \).
Problem 6. [10 points; 5, 5.]

Consider the points \(P(1, 0, 1), \ Q(-2, 1, 3), \ R(1, -1, 0). \)

(i) Find the equation of the plane through \(P, Q, R. \)

(ii) Find the cosine of the angle between the vectors \(\vec{PQ} \) and \(\vec{PR}. \)
Problem 7. [13 points; 4, 4, 5.]

Consider the function
\[f(x, y) = 2y \ln(x - \sqrt{y}). \]

(i) Find the unit direction of steepest increase for \(f \) at the point \(P(2, 1) \).

(ii) Find the directional derivative of \(f \) at the point \(P(2, 1) \) in the direction \(\vec{u} = \frac{3\vec{i} - 4\vec{j}}{5} \).

(iii) Linearly approximate the value \(f((2, 1) + \frac{1}{200} \vec{u}) \).
Problem 8. [12 points; 5, 7.]

Consider the function $f(x, y) = x^2 y^3 - e^{xy} - 1$.

(i) Find the tangent plane to the graph of f at $(1, 1, 0)$.

(ii) Find the quadratic approximation of the function f near $(1,1)$.
Problem 9. [12 points.]

Consider the triangular T region bounded by

\[x \geq 0, \ y \geq 0, \ x + 2y \leq 2. \]

Calculate

\[\int \int_T x + y \ dx \ dy. \]