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We studied series & power
series

.

Today , We consider Fourier series
.

Fourier series were introduced by J. Fourier to study the

heat equation in the early 1800 's
.

Nowadays , they have applications to differential equations

image
& audio

processing ,

mathematicalphysics etc .

We only scratch the surface of Fourier analysis .



§ 1. Trigonometric polynomials
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it

on
einx

-

(x) =[ , Cn C- ①
n = - N

Remark Using ein×
= cos Cnx) + i sin Cnx)

any trigonometric

polynomial can be expressed in terms of cos Cnx)
,

sin (nx )

it I
,

m = O

e

" ×

olx ={Remark ¥ f-
%

O
,
n -1-0

Indeed, for n -1-0 :

init
•

'nx ✗ = 'T

= e-
in 't+

ein×d× = 2¥ =o since e
= (- s) ?f.

,
in

✗ = - it

I

÷ / eiʰ×= {- I



Remark We have

a = ¥ /
"

TG) e-
"↳
dx

.

it 1k / ≤ N.

K
- it

Indeed
.

IT N

Cn
ein ? e-

' kx

÷/
⇒

This e-
'"✗
dx

= [ ÷ f dx

n = - N

N IT

@

i (n - b) ×

= [ dxon - ÷
,
/
in
= - N -

o if n≠k or 1 if n=k

↳ previous
= Cg as claimed.

remark
.



Definition Trigonometric series are

expressions of
the form

is
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The Nth partial sum is defined to be
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§2 .
Fourier series

Let f : IR → a integrable over [- t.it] & 21T -periodic.

Definition -he Fourier coefficients of f are defined by
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Notation
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'"×

.

This does not imply convergence
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sort cy -

t)
.

it simply says RHS is the Fourier series of f.
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Extend f: IR → e by requiring f be 2T -periodic .

Fourier coefficients off
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For n ≠ 0 ,
we compute
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Question Does the Fourier series converge to f ?

I

Answer is
"

no
" for pointwise & uniform convergence . >

unless further

assumptions are made about f. (Rudi'n 8.14)
.

We will not consider these
.

Instead
, we

establish a general result . This
requires a new

notion of convergence .



§ 3 .

L2
-

convergence

Recall that in Homework 3 we defined the
"L2

- distance
"

to be
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Definition L - convergence is convergence
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III Pointwise & L2 convergence are harder to
compare .



Example Fn :[0,1 ] → IR
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We let fcx ) =o .
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§4
.

Parsexal 's Theorem ( 8
.

/6)

An important result in Fourier analysis is :

Theorem Let f : R - e be at -periodic, integrable over [-t.it]
.

The Fourier series converges
to f in L ?

This means that if Siv are the Fourier partial sums then
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The proof will be given over the next 2 lectures
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We have seen above that co =£ , Cn = o for n even
, Cn = 1- for n odd.
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The factor
" 2- " accounts for both positive & negative n 's

.

11-2

Thus
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