$$
\begin{gathered}
\text { Math } 1408-\text { Feature } 25 \\
\text { May } 27,2022
\end{gathered}
$$

We studied series \& power series.

Today, we consider Fourier series.

Fourier series were introduced by J. Fourier to study the
heat equation in the early 1800's.

Nowadays, they have applications to differential equations image \& audio processing, mathematical physics etc.

We only scratch the surface of Fourier analysis.
§1. Trigonometric polynomials
Definition A trigonometric polynomial is an expression

$$
T(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}, c_{n} \in \mathbb{C}
$$

Remark Using $e^{i n x}=\cos (n x)+i \sin (n x)$ any trigonometric
polynomial can be expressed in terms of $\cos (n x)$, $\sin (n x)$

Remark $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x= \begin{cases}1 & , n=0 \\ 0 & , n \neq 0\end{cases}$
Indeed, for $n \neq 0$:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x=\left.\frac{1}{2 \pi} \frac{e^{\ln x}}{i n}\right|_{x=-\pi} ^{x=\pi}=0 \text { since } e^{i n \pi}=e^{-i n \pi}=(-1)^{2}
$$

Remark We have

$$
\left.c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} T(x) e^{-i k x} d x . \quad \forall \quad \right\rvert\, k / \leq N .
$$

Indeed.

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} T(x) e^{-i k x} d x=\sum_{n=-N}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} c_{n} e^{i n x} \cdot e^{-i k x} d x \\
&=\sum_{n=-N}^{N} c_{n} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n-k) x} d x \\
& 0 \text { if } n \neq k \text { or } 1 \text { if } n=k \\
&=c_{k} \text { as claimed. } \underbrace{\text { remark. }}_{\text {previous }}
\end{aligned}
$$

Definition Trigonometric series are expressions of the form

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

The $N^{\text {th }}$ partial sum is defined to be

$$
s_{N}=\sum_{n=-N}^{N} c_{n} e^{\ln x}
$$

\int_{2}. Fourier series
Z.f $f: R \rightarrow \mathbb{C}$ integrable over $[-\pi, \pi] \& 2 \pi$-periodic.

Definition The Fourier coefficients of f are defined by

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

Notation

- $\sum_{n=-\infty}^{\infty} c_{n} e^{\ln x}=$ Fourier series of f.

We also writ $f \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$. This does not imply convergence of any sort $(y=t)$, it simply says $R H s$ is the Fourier sorizo of f.

Example $\quad Z_{0} t$

$$
f(x)= \begin{cases}1, & 0 \leq x<\pi \\ 0, & \pi \leq x<2 \pi\end{cases}
$$

Extend $f: \mathbb{R} \rightarrow \infty$ by requiring f be 2π-periodic.

Fourier coefficients of f

$$
c_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} d x=\left.\frac{1}{2 \pi} \cdot x\right|_{x=0} ^{x=\pi}=\frac{1}{2}, \quad c_{0}=\frac{1}{2}
$$

For $n \neq 0$, we compute

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-\ln x} d x=\frac{1}{2 \pi} \int_{0}^{\pi} e^{-\ln x} d x=\left.\frac{1}{2 \pi} \cdot \frac{e^{-i n x}}{-i n}\right|_{x=0} ^{x=\pi} \\
& =\frac{1}{2 \pi} \cdot \frac{e^{-\ln \pi}-1}{-i n}=\frac{1}{2 \pi} \cdot \frac{(-1)^{n}-1}{-i n} u \operatorname{sing} e^{-i n \pi}=e^{\ln \pi}=(-1)^{n}
\end{aligned}
$$

Thus $c_{n}=0$ for n even $\neq 0$,

$$
c_{n}=\frac{1}{\pi i_{n}} \text { for } n \text { odd. }
$$

$$
c_{0}=\frac{1}{2}
$$

Question Does the Fourier series converge to f ?

Answer is "no" for pointwise \& uniform convergence., unless further assumptions are made about f. (Rudin 8.14).

We will not consider these.

Instead, we establish a general result. This requires a new motion of convergence.

$$
\text { SB. } L^{2}-\text { convergence }
$$

Recall that in Homework 3 we defined the "L2 -distance" to be

$$
d_{L^{2}}(f, g)=\|f-g\|_{L^{2}}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x)-g(x))^{2}\right)^{1 / 2} .
$$

Definition d^{2}-convergence is convergence in the metric d :

$$
f_{n} \longrightarrow f \text { in } \alpha^{2} \Leftrightarrow d\left(f_{n}, f\right) \rightarrow 0 \Leftrightarrow \lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left(f_{n}(x)-\left.f(x)\right|^{2} d x=0\right.
$$

Remark Over a general interval $[0, b]$, the distance is given by

$$
d_{L^{2}}(f, g)=\|f-g\|_{L^{2}}=\left(\frac{1}{b-a} \int_{a}^{b}\left(f(x)-\left.g(x)\right|^{2} d x\right)^{1 / 2}\right.
$$

Remark IG If $f_{n} \Longrightarrow f$ in $[-\pi, \pi]$ then $f_{n} \xrightarrow{L^{2}} f$ in $[-\pi, \pi]$ (WK $, \#, 5$)

III Pointwisc \& L^{2} convergence are harder to compare.

Example $f_{n}:[0,1] \rightarrow \mathbb{R}$

$$
f_{n}(x)= \begin{cases}1, & 0 \leq x \leq \frac{1}{n} \\ 0, & \frac{1}{n}<x \leq 1\end{cases}
$$

We lot $f(x)=0$. We show $f_{n} \rightarrow f$ in α ?

Indeed,

$$
\begin{aligned}
& \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=\int_{0}^{1} f_{n}(x)^{2} d x=\int_{0}^{1 / 2} d x=\frac{1}{n} \rightarrow 0 \text { so } \\
& f_{n} \rightarrow f \text { in } \alpha^{2} .
\end{aligned}
$$

S4. Parseval's Theorem (8.16)

An important result in Fourier analysis is:

Theorem Lat $f: \mathbb{R} \rightarrow \mathbb{C}$ be 2π-periodic, integrable over $[-\pi, \pi]$.

11 The Fourier series converges to f in L ?

This means that if S_{N} are the Fourior partial sums then

$$
\left.\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} / s_{N}(x)-f(x)\right)^{2} d x=0
$$

[四 $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}$.

The proof will be given our the next 2 lectures

Example $\quad Z_{0} t$

$$
f(x)= \begin{cases}1, & 0 \leq x<\pi \\ 0, & \pi \leq x<2 \pi\end{cases}
$$

We have seen above that $c_{0}=\frac{1}{2}, c_{n}=0$ for n even, $c_{n}=\frac{1}{\pi_{n i}}$ for n odd.
We compute $\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{0}^{\pi} d x=\frac{1}{2 \pi} \cdot \pi=\frac{1}{2}$.
By Parseval

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \text {. Substituting, this gives } \\
& \frac{1}{2}=\frac{1}{4}+\sum_{n \text { odd }}\left|\frac{1}{\pi n i}\right|^{2}=\frac{1}{4}+\frac{2}{\pi^{2}} \sum_{\substack{n \text { odd } \\
n>0}} \frac{1}{n^{2}} \\
& \left|c_{0}\right|^{2}
\end{aligned}
$$

The factor " $\frac{2}{\pi^{2}}$ " accounts for both positive \& negative n's.

Thus

$$
\frac{1}{2}=\frac{1}{4}+\frac{2}{\pi^{2}} \sum_{\substack{n \text { odd } \\ n>0}} \frac{1}{n^{2}} \Rightarrow \sum_{\substack{n \text { odd } \\ n>0}} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}
$$

Remark In HWK 7, you will show similar identities egg.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90}
$$

