Math 145, Problem Set 5. Due Friday, May 16.

You may assume that the ground field is \(k = \mathbb{C} \).

1. **(Products of affine varieties.)** Let \(X \subset \mathbb{A}^n \) and \(Y \subset \mathbb{A}^m \) be affine algebraic sets.

 (i) Show that \(X \times Y \subset \mathbb{A}^{n+m} \) is also an affine algebraic set.

 (ii) *Extra credit and entirely optional.* Show that if \(X \) and \(Y \) are irreducible, \(X \times Y \) is also irreducible. Look up problem 5.10 (i) in the textbook for a hint.

2. **(Intersections with hypersurfaces.)**

 (i) Let \(H \subset \mathbb{P}^n \) be a linear hyperplane in \(\mathbb{P}^n \) (e.g. \(H \) is cut out by one linear homogeneous equation in \(\mathbb{P}^n \)). Show that the quasiprojective algebraic set \(\mathbb{P}^n \setminus H \) is isomorphic to \(\mathbb{A}^n \).

 Hint: Explain first that after changing coordinates you may assume that \(H \) is cut out by the equation \(H = \{ X_n = 0 \} \).

 Show that
 \[
 \pi : \mathbb{P}^n \setminus H \to \mathbb{A}^n, [X_0 : \ldots : X_n] \to \left(\frac{X_0}{X_n}, \ldots, \frac{X_{n-1}}{X_n} \right)
 \]
 is an isomorphism.

 (ii) Show that if \(X \) is a degree \(d \) hypersurface in \(\mathbb{P}^n \) then \(\mathbb{P}^n \setminus X \) admits a nonconstant morphism to an affine space. (In fact, it’s not much harder to show that \(\mathbb{P}^n \setminus X \) is isomorphic to an affine variety).

 Hint: You may want to use the \(d \)-fold Veronese embedding of \(\mathbb{P}^n \) to reduce to part (i). Note that the equation of \(X \) becomes linear in the Veronese coordinates.

 (iii) Conclude that if \(X \) is a hypersurface in \(\mathbb{P}^n \) and \(Y \subset \mathbb{P}^n \) is a projective variety which is not a point, then the intersection of \(X \) and \(Y \) is non-empty.

 (iv) If \(X \) is a degree \(d \) hypersurface in \(\mathbb{P}^n \) and \(L \) is a line in \(\mathbb{P}^n \) not contained in \(X \), show that \(L \) and \(X \) intersect in at most \(d \) points. In fact, they intersect in exactly \(d \) points counted with multiplicity.

 Hint: After a change of coordinates, you may assume that \(L \) is cut out by the equations
 \[
 X_1 = \ldots = X_{n-2} = 0.
 \]

3. **(Rational varieties.)** Two projective varieties \(X \) and \(Y \) are birational if there are rational maps
 \[
 f : X \dashrightarrow Y, \quad g : Y \dashrightarrow X,
 \]
 which are rational inverses to each other. We say that \(X \) is rational if \(X \) is birational to \(\mathbb{P}^n \) for some \(n \).

 (i) Show that a birational isomorphism \(f : X \dashrightarrow Y \) induces an isomorphism of the fields of rational functions \(f^* : K(Y) \to K(X) \). The converse is also true but you don’t have to prove it.

 Remark: It follows that if \(X \) is rational, then \(K(X) \cong K(\mathbb{P}^n) \cong k(t_1, \ldots, t_n) \), the field of rational fractions in the variables \(t_1, \ldots, t_n \). (To see the last isomorphism, elements in \(K(\mathbb{P}^n) \) are fractions \(f(t_0 : \ldots : t_n)/g(t_0 : \ldots : t_n) \), with \(f \) and \(g \) homogeneous of the same degree. The isomorphism with \(k(t_1, \ldots, t_n) \) is obtained setting the variable \(t_0 = 1 \). This destroys the homogeneity of the numerator and denominator.)
(ii) Show that $\mathbb{P}^n \times \mathbb{P}^m$ is rational, by constructing an explicit birational isomorphism with \mathbb{P}^{n+m}. Show that if X and Y are rational, then $X \times Y$ is rational.

Remark: It is very difficult to determine if a given variety is rational. We have seen that lines and conics in \mathbb{P}^2 are rational, while elliptic curves in \mathbb{P}^2 are not. Twisted cubics in \mathbb{P}^3 are rational. We will prove below that quadrics in \mathbb{P}^3 are rational. Cubic surfaces in \mathbb{P}^3 also turn out to be rational. However, most varieties are not rational.

4. (Quadrics are rational.) A quadric $Q \subset \mathbb{P}^n$ is non-degenerate if it is not contained in a linear hyperplane of \mathbb{P}^n. For obvious reasons, we will only consider non-degenerate quadrics.

(i) Show that a non-degenerate irreducible quadric Q in \mathbb{P}^3 can be written in the form $xy = zw$ after a suitable change of homogeneous coordinates. Combining this result with the Segre embedding, conclude that any quadric in \mathbb{P}^3 is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, hence it is rational.

Hint: Using the argument we gave in class for conics in \mathbb{P}^2, show first that the quadric can be brought into the form $x^2 + y^2 + z^2 + w^2 = 0$.

(ii) In general, show that any non-degenerate irreducible quadric $Q \subset \mathbb{P}^{n+1}$ is birational to \mathbb{P}^n.

Hint: Pick $p \in Q$ and assume after a change of coordinates that $p = [1 : 0 : \ldots : 0]$. Consider the linear hyperplane $H = \{X_0 = 0\}$.

For any $q \in Q$, define $f(q)$ to be the point of intersection of the line pq with H. Show that $f : Q \dasharrow H$ is a birational isomorphism. This rational map is called the linear projection from p.

5. (Quadrics and curves.)

(i) Show that two quadrics in \mathbb{P}^3 intersect in an elliptic curve. More precisely, consider the following two quadrics in \mathbb{P}^3:

$Q_1 = Z(xw - yz), Q_2 = (yw - (x - z)(x - \lambda z)).$

Show that the intersection of the two quadrics is isomorphic to the elliptic curve E_λ.

(ii) Show that the twisted cubic in \mathbb{P}^3 is the intersections of the three quadrics $Q_1 = Z(xz - y^2), Q_2 = Z(xt - yz), Q_3 = Z(yt - z^2)$.

Show that any two of these quadrics will not intersect in the twisted cubic.

6. (Introduction to moduli theory.) Show that for any 3 lines L_1, L_2, L_3 in \mathbb{P}^3, there is a quadric $Q \subset \mathbb{P}^3$ containing all three of them.

(i) First, observe that any homogeneous degree 2 polynomial in 4 variables has 10 coefficients. These coefficients can be regarded as a point in the projective space \mathbb{P}^9. Show that this point only depends on the quadric Q and not on the polynomial defining it. Let us denote this point by p_Q. Show that any point $p \in \mathbb{P}^9$ determines a quadric in \mathbb{P}^3.

Remark: The projective space \mathbb{P}^9 is said to be the moduli space of quadrics in \mathbb{P}^3.

(ii) Consider a line \(L \subset \mathbb{P}^3 \). Show that there is a codimension 3 projective linear subspace
\[H_L \subset \mathbb{P}^9 \]
such that
\[L \subset Q \iff p_Q \in H_L. \]

\textit{Hint:} You may want to change coordinates to assume that the line \(L \) is cut out by the equations \(X_0 = X_1 = 0 \). This will force 3 of the coefficients of \(Q \) to be zero. Which ones? What is the subspace \(H_L \) in this case?

(iii) Show that any three codimension 3 projective linear subspaces of \(\mathbb{P}^9 \) intersect. In particular, show that
\[H_{L_1} \cap H_{L_2} \cap H_{L_3} \neq \emptyset, \]
and conclude that \(L_1, L_2, L_3 \) are contained in a quadric \(Q \).

(iv) Explain (briefly) that if \(L_1, L_2, L_3 \) are disjoint lines, then \(Q \) can be assumed to be irreducible.

\textit{Hint:} What are the reducible quadrics?