Math 203, Problem Set 4. Due Wednesday, November 4.

For this problem set, you may assume that the ground field is algebraically closed.

1. (Quadrics are rational.) Let $Q \subset \mathbb{P}^n$ be an irreducible complex projective quadric. We can record the coefficients of Q in a symmetric square matrix A such that $Q(x) = x^T A x$ for $x \in \mathbb{P}^n$.

We say that the quadric Q is nondegenerate if the matrix A is non-degenerate.

(i) Show that a non-degenerate irreducible quadric Q in \mathbb{P}^3 can be written as $xy = zw$ after a suitable change of homogeneous coordinates. Conclude that Q is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, hence Q is rational. You may wish to diagonalize A first.

(ii) In general, possibly using the projection from a point to a hyperplane, show that any non-degenerate irreducible quadric $Q \subset \mathbb{P}^n$ is birational to \mathbb{P}^{n-1}.

2. (Joins.) Let $G(1, n)$ be the Grassmannian of lines in \mathbb{P}^n as in the previous homework. Show that:

(i) The set $\{(L, P) : P \in L\} \subset G(1, n) \times \mathbb{P}^n$ is closed.

(ii) If $Z \subset G(1, n)$ is any closed subset then the union of all lines $L \subset \mathbb{P}^n$ such that $L \in Z$ is closed in \mathbb{P}^n.

(iii) Let $X, Y \subset \mathbb{P}^n$ be disjoint projective varieties. Then the union of all lines in \mathbb{P}^n intersecting X and Y is a closed subset of \mathbb{P}^n. It is called the join $J(X, Y)$ of X and Y.

3. (Criterion for irreducibility.) Assume that $f : X \to Y$ is a surjective morphism of projective algebraic sets such that Y is irreducible and all fibers of f are irreducible of the same dimension. Show that X is irreducible as well.

4. (Intersections in projective space.) Let X and Y be two subvarieties of \mathbb{P}^n. Show that if $\dim X + \dim Y \geq n$, then $X \cap Y$ is not empty.

Hint: Let H_1, H_2 be two disjoint linear subspaces of dimension n in \mathbb{P}^{2n+1}, and consider $X \subset H_1 \cong \mathbb{P}^n \subset \mathbb{P}^{2n+1}$ and $Y \subset H_2 \cong \mathbb{P}^n \subset \mathbb{P}^{2n+1}$ as subvarieties of \mathbb{P}^{2n+1}. Show that the join $J(X, Y)$ in \mathbb{P}^{2n+1} has dimension $\dim X + \dim Y + 1$. Then construct $X \cap Y$ as a suitable intersection of $J(X, Y)$ with $n + 1$ hyperplanes.

5. (Lines on hypersurfaces.) Let $d > 2n - 3$. Show that a general degree d hypersurface in \mathbb{P}^n contains no lines. (That is, show that at least one such hypersurface contains no lines. This implies that in fact a random such hypersurface contains no lines.)

Hint: View each hypersurface X as point in \mathbb{P}^N for $N = \binom{n+d}{d} - 1$ by recording the coefficients of the defining equation. Consider the incidence correspondence $J = \{(L, X) : L \subset X\} \subset G(1, n) \times \mathbb{P}^N$. Calculate the the dimension of fibers under the projections to the two factors. Conclude that there is a nonempty open set in \mathbb{P}^N corresponding to hypersurfaces without lines.