For this problem set, you may assume that the ground field is $k = \mathbb{C}$.

1. (Normal varieties.) Show that the quadric $x^2 + y^2 + z^2 = 0$ in \mathbb{A}^3 is normal.

 Hint: Consider $\alpha \in K(X)$. Show that $\alpha = u + zv$ for $u, v \in k(x, y)$. Show that if α is integral then u, v can be taken to be polynomials. To this end, show that the minimal polynomial of α over $k(x, y)$ is $T^2 - 2uT + (u^2 + v^2(x^2 + y^2)) = 0$ and use that its coefficients must be in $k[x, y]$ (why?)

2. (Resolving curve singularities.) Resolve the following A_k plane curve singularity by subsequent blow-ups

$$y^2 - x^{k+1} = 0.$$

Remark: We have the following terminology on isolated “simple” singularities of hypersurfaces in \mathbb{A}^{n+2}:

- type A_k: $x^k + y^2 + z_1^2 + \ldots + z_n^2 = 0$;
- type D_k: $x^{k-1} + xy^2 + z_1^2 + \ldots + z_n^2 = 0$;
- type E_6: $x^4 + y^3 + z_1^2 + \ldots + z_n^2 = 0$;
- type E_7: $x^3y + y^3 + z_1^2 + \ldots + z_n^2 = 0$;
- type E_8: $x^5 + y^3 + z_1^2 + \ldots + z_n^2 = 0$.

(The names suggest a connection with the Weyl groups of type A, D, E.)

3. (Tangent cones.) Let $X \subset \mathbb{A}^n$ be an affine variety and let $p \in X$. Let m be the maximal ideal of $O_{X, p}$. Show that the coordinate ring $A(C_{X, p})$ of the tangent cone of X at p is isomorphic to the graded algebra $\bigoplus_{k \geq 0} m^k / m^{k+1}$.

 Hint: Let $i \subset k[x_1, \ldots, x_n]$ be the ideal of X. Show that

$$k[x_1, \ldots, x_n]/i^m \to \bigoplus_{k \geq 0} m^k / m^{k+1}$$

given by $f \mapsto f^{(k)}|_X$ is an isomorphism.

4. (Exceptional hypersurface.) Consider the blowup of the affine variety $X \subset \mathbb{A}^n$ at $p \in X$. Show that the exceptional hypersurface is the projectivization of the tangent cone

$$E \cong \mathbb{P}(C_{X, p}).$$

You may want to generalize the argument we had in class for plane curves.

5. (Cremona transformations.) Consider the Cremona birational automorphism of \mathbb{P}^2 given by

$$C([x_0 : x_1 : x_2]) = [x_1x_2 : x_0x_2 : x_0x_1].$$

Let $\widetilde{\mathbb{P}}^2$ be the blowup of \mathbb{P}^2 at the three points $P_1 = [1 : 0 : 0]$, $P_2 = [0 : 1 : 0]$ and $P_3 = [0 : 0 : 1]$ where C is undefined. Show that
(i) Show that C extends to an isomorphism
\[\tilde{C} : \tilde{\mathbb{P}}^2 \to \tilde{\mathbb{P}}^2. \]

(ii) Let E_1, E_2, E_3 be the exceptional lines for the blowup, and let L_{ij} be the strict transform of the line through P_i and P_j. Draw the incidence graph of the configuration of lines. What happens to each of the 6 lines under \tilde{C}?

Hint: Show that the equations of the blowup $\tilde{\mathbb{P}}^2 \subset \mathbb{P}^2 \times \mathbb{P}^2$ are given by
\[x_0y_0 = x_1y_1 = x_2y_2. \]

It may help to find the equations of the exceptional lines E_1, E_2, E_3 and those of the strict transforms L_{23}, L_{12}, L_{13}.

(iii) The group of automorphisms of the field of fractions in two variables
\[K(\mathbb{P}^2) \cong K(\mathbb{A}^2) \cong k(t_1, t_2) \]

is called the Cremona group. Therefore, the elements of the Cremona group correspond to birational self-isomorphisms of \mathbb{P}^2.

Explain that the Cremona transformation C corresponds to the involution of $k(t_1, t_2)$ sending
\[(t_1, t_2) \to (t_1^{-1}, t_2^{-1}). \]

Furthermore, show that $GL_2(\mathbb{Z})$ is a subgroup of the Cremona group, in such a fashion that $-I_2$ corresponds to the Cremona transformation C.

Remark: The Cremona group is not yet fully understood (especially when the number of indeterminantes is bigger than 2).

6. (*Del Pezzo surfaces.*) From Andreas Gathmann’s notes, read the proof that the blowup of \mathbb{P}^2 at two points is isomorphic to the blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ at one point. Do not hand in.