Problem 1. Let a_1, \ldots, a_{2g+1} be pairwise distinct constants. Find the singularities of the projective hyperelliptic curve of genus g:

$$y^2z^{2g-1} = (x - a_1z)\ldots(x - a_{2g+1}z).$$

Answer: Let

$$f(x,y,z) = y^2z^{2g-1} - (x - a_1z)\ldots(x - a_{2g+1}z).$$

Then f is singular at p if and only if

$$f(p) = \frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = \frac{\partial f}{\partial z}(p) = 0.$$

Since

$$\frac{\partial f}{\partial y} = 2yz^{2g-1},$$

we see that if $p = [x : y : z]$ is a singular point then $y = 0$ or $z = 0$.

If $y = 0$, from $f(p) = 0$ we obtain $x = a_iz$ for some i. Because we are free to scale the coordinates in \mathbb{P}^2, $p = [a_i : 0 : 1]$. We compute

$$\frac{\partial f}{\partial x} = -\sum_{k=1}^{2g+1} \prod_{j \neq k}(x - a_jz).$$

Similarly,

$$\frac{\partial f}{\partial z} = (2g - 1)y^2z^{2g-2} + \sum_{k=1}^{2g+1} a_k \prod_{j \neq k}(x - a_jz).$$

Thus

$$\frac{\partial f}{\partial x}(p) = \prod_{j \neq i}(a_j - a_i) \neq 0$$

since a_i are distinct. Thus $[a_i : 0 : 1]$ are not singular points.

If $z = 0$, $f(x,y,z) = x^{2g+1} = 0$, which is only possible when $x = 0$. Then $p = [0 : 1 : 0]$. The formulas above show

$$f(p) = \frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = \frac{\partial f}{\partial z}(p) = 0,$$

when $g \geq 2$ and $\frac{\partial f}{\partial z}(p) \neq 0$ when $g = 1$. Thus $[0 : 1 : 0]$ is the only singular point when $g \geq 2$. \hfill \square

Problem 2. Let Q_1 and Q_2 be two distinct nonsingular conics in \mathbb{P}^2. The family of conics

$$Q_{\lambda, \mu} = \lambda Q_1 + \mu Q_2$$

where $[\lambda : \mu] \in \mathbb{P}^1$ is called a pencil of conics.
(i) Recall that any conic \(Q \subset \mathbb{P}^2 \) determines and is determined by the symmetric matrix \(A \) of coefficients with
\[Q([x : y : z]) = [x \ y \ z]^T A [x \ y \ z]. \]
Possibly by diagonalizing \(A \) (and therefore \(Q \)), show that
\(Q \) is singular if and only if \(\det A = 0 \).

(ii) Letting \(A_{\lambda,\mu} \) be the matrix associated to the conic \(Q_{\lambda,\mu} \), show that \(\det A_{\lambda,\mu} \) is a cubic polynomial in \(\lambda, \mu \). Prove that any pencil of conics contains (at most) 3 singular conics.

(iii) Let \(p_1, p_2, p_3, p_4 \) be points in \(\mathbb{P}^2 \) such that no three of them lie on a line. Show that the set of conics through \(p_1, p_2, p_3, p_4 \) is a pencil. (Feel free to change coordinates to prove this fact). What are the singular conics in this pencil?

Answer:

(i) Since \(A \) is symmetric, by the spectral theorem there exists an orthonormal basis of eigenvectors. Let \(C \) be the matrix whose columns are this basis, so that \(C^T AC \) is diagonal. We make the change of coordinates \(X^{\text{new}} = C^T X \).

Under these coordinates, we have
\[Q = \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2, \]
where the \(\lambda_i \) are the eigenvalues of \(A \). Then a point \([x : y : z]\) is singular if and only if the three partial derivatives of \(Q \) vanish, that is
\[2\lambda_1 x = 2\lambda_2 y = 2\lambda_3 z = 0. \]

If such a point exists, then at least one of \(x, y, z \) is nonzero; WLOG let \(x \neq 0 \). Then the last equality gives \(\lambda_1 = 0 \), hence
\[\det A = \lambda_1\lambda_2\lambda_3 = 0. \]
Conversely, if \(\det A = 0 \), then one of the \(\lambda_i \) must be zero; WLOG let \(\lambda_1 = 0 \). Then \([1 : 0 : 0]\) is a singularity.

(ii) If \((a_{ij})\) and \((b_{ij})\) are respectively the matrices associated to \(Q_1 \), and \(Q_2 \), then
\[A_{\lambda,\mu} = (\lambda a_{ij} + \mu b_{ij}). \]

In calculating the determinant, each term is the product of three such linear terms in \(\lambda \) and \(\mu \), hence the determinant is a cubic polynomial in \(\lambda \) and \(\mu \).

Note that \(Q_{\lambda,\mu} \) is singular if and only if
\[\det A_{\lambda,\mu} = 0. \]
Furthermore, for \(\lambda \neq 0 \) we have \(\det A_{\lambda,0} = \lambda^3 \det Q_1 \neq 0 \) since \(Q_1 \) is nonsingular and by (i). That is, \(\det A_{\lambda,\mu} \) contains a \(\lambda^3 \) term, and similarly it contains a \(\mu^3 \) term. Hence, if \(\det A_{\lambda,\mu} \) equals zero and either \(\lambda \) or \(\mu \) is zero, then the other
must be as well, which yields no cubic. Thus, we may assume λ, μ are nonzero, and we may further assume $\mu = 1$ (since $Q_{\lambda,\mu} = Q_{c\lambda,c\mu}$). Since $\det A_{\lambda,1} = 0$ is a cubic equation, it has at most three solutions, and therefore any pencil of conics contains at most three singular conics.

(iii) Change coordinates such that

$$p_1 = [1 : 0 : 0] \quad p_2 = [0 : 1 : 0] \quad p_3 = [0 : 0 : 1] \quad p_4 = [1 : 1 : 1]$$

Let Q be the equation for a conic passing through these points. Q cannot contain an x^2 term, as then $Q([1 : 0 : 0])$ would not equal zero, and likewise Q cannot contain an y^2 or z^2 term. Hence, Q must be of the form

$$a xy + b yz + c xz,$$

which passes through the first three points for any a, b, c. The conic passes through p_4 as well if and only if $a + b + c = 0$.

The subspace

$$\{(a, b, c) : a + b + c = 0\}$$

has dimension two with basis

$$\{(1, 1, -2), (1, -2, 1)\}.$$

Therefore, all such conics Q can be written as

$$\lambda(xy + yz - 2xz) + \mu(xy - 2yz + xz) = 0$$

for some λ, μ.

To show that this gives a pencil, we must check that the conics

$$f = xy + yz - 2xz \quad \text{and} \quad g = xy - 2yz + xz$$

are nonsingular. Taking derivatives,

$$\frac{\partial f}{\partial x} = y - 2x \quad \frac{\partial f}{\partial y} = x + z \quad \frac{\partial f}{\partial z} = y - 2z$$

If all are to vanish, then from the x- and z-partials we conclude $x = z$, but then the y-partial does not vanish unless $x = y = z = 0$, which is impossible in \mathbb{P}^2. Therefore, f gives a nonsingular conic, and similarly g does as well.

From (ii), there are at most three nonsingular conics in the pencil. Three such conics are

$$xy - yz, \quad xy - xz, \quad yz - xz,$$

which have singularities for instance at

$$[1 : 0 : 1], \quad [0 : 1 : 1], \quad [1 : 1 : 0].$$

Therefore, they are the only ones.
Geometrically, these conics are the three union of lines joining the four points. For instance the singular conic \(xy - yz \) is the union of the lines \(p_1p_3 \) and \(p_2p_4 \). The singular conic \(xy - xz \) is the union of the lines \(p_1p_4 \) and \(p_2p_3 \). Finally the singular conic \(yz - xz \) is the union of the lines \(p_1p_3 \) and \(p_2p_4 \).

\[\square \]

Problem 3. Show that a general hypersurface of degree \(d \) in \(\mathbb{P}^n \) is non-singular:

(i) For any hypersurface \(Z(f) \subset \mathbb{P}^n \) of degree \(d \), view the coefficients of \(f \) as a point \(p_f \) in a large dimensional projective space \(\mathbb{P}^N \) (This projective space is called the moduli space of degree \(d \) hypersurfaces). Let

\[
X = \{ (f, p) \in \mathbb{P}^N \times \mathbb{P}^n : p \text{ is a singular point of } f \}.
\]

Show that \(X \) is a projective algebraic set in \(\mathbb{P}^N \times \mathbb{P}^n \).

(ii) Conclude that the image \(\pi(X) \) of \(X \) under the projection onto \(\mathbb{P}^N \) is a projective algebraic set. What is \(\pi(X) \)? Conclude that the subset of \(\mathbb{P}^N \) corresponding to smooth hypersurfaces is open and nonempty.

Answer:

(i) Let

\[
f = \sum_I a_I X^I,
\]

where \(I \) is a multi-index. Then \(a_I \) will be the coordinates of the point \(p_f \) in \(\mathbb{P}^N \).

Let \(p = [x_0 : x_1 : \ldots : x_n] \), the condition \(f \) is singular at \(p \) is equivalent to

\[
f(p) = \frac{\partial f}{\partial X_i}(p) = 0 \quad \text{for all } i \quad \text{and}
\]

\[
\sum_I a_I x^I = \frac{\partial(\sum_I a_I X^I)}{\partial X_i}(p) = 0.
\]

Let \(a_I \) vary in \(\mathbb{P}^N \) and \(x \) vary in \(\mathbb{P}^n \), the equations above can be viewed as equations of \(a_I \) and \(x \) in \(\mathbb{P}^N \times \mathbb{P}^n \) which are bi-homogeneous in the variables. Therefore \(X \) is projective algebraic.

(ii) As shown in class, the projection \(\pi \) is a closed map e.g. \(\pi(X) \) is a projective algebraic set. Note that

\[
\pi(X) = \{ f \mid f \text{ is a nonsingular homogeneous degree } d \text{ polynomial} \}
\]

The complement of \(\pi(X) \) is open, therefore nonsingular homogeneous degree \(d \) polynomial form an open set in the moduli space.

To show non-emptyness, observe that the hypersurface

\[
f = X_0^d + \ldots + X_n^d
\]

has no singularities. Indeed, all derivatives of \(f \) are \(dX_i^{d-1} \) which do not have a common vanishing in \(\mathbb{P}^n \).
Problem 4.

(i) Show that any singular irreducible cubic in \(\mathbb{P}^2 \) is isomorphic to either the nodal or the cuspidal cubics:

\[y^2z = x^2(x+z) \text{ or } y^2z = x^3. \]

(ii) Using (i), show that irreducible cubics in \(\mathbb{P}^2 \) can have at most 1 singular point. Exhibit a cubic in \(\mathbb{P}^2 \) with 3 singular points.

Answer:

(i) Assume the singularity is at \([0:0:1]\) and let \(f \) be the polynomial giving the cubic. Then since

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0, \]

\(f \) may not contain an \(xz^2 \), \(yz^2 \) or \(z^3 \) terms. That is, \(z \) does not appear to a power higher than 1 in \(f \), and so we may write the cubic as

\[(\text{quadratic polynomial in } x, y) \cdot z = Q(x, y) \]

where \(Q \) is a cubic polynomial in \(x, y \).

The quadratic polynomial is either the square of a linear term or the product of two distinct linear terms in \(x \) and \(y \). In the first case, let \(y^{\text{new}} \) be that linear term, or in the second let \(x^{\text{new}} \) and \(y^{\text{new}} \) be the two linear terms. We obtain

\[y^2z = Q(x, y) \quad \text{or} \quad xyz = Q(x, y) \]

Consider the first case, \(y^2z = Q(x, y) \). We note first that \(Q \) must contain an \(x^3 \) term, as otherwise both sides are divisible by \(y \) contradicting that the conic is irreducible. First make a scaling change of coordinates of \(x \) so that this \(x^3 \) term has coefficient 1. We seek to “complete the cube” on the right-hand side. Given the coefficient of \(x^2y \) in \(Q \), there are specific coefficients for \(xy^2 \) and \(y^3 \) such that the right-hand side is a perfect cube. By making the change of coordinates

\[z \mapsto \lambda x + \mu y + z, \]

with the appropriate choices of \(\lambda \) and \(\mu \), we produce the terms \(\lambda xy^2 \) and \(\mu y^3 \), which can be used to complete the cube. This produces

\[y^2z = (x + by)^3. \]

With the final change of coordinates \(x^{\text{new}} = x + by \), we end with

\[y^2z = x^3 \]

as desired.

Now consider the second case, \(xyz = Q(x, y) \). As before, \(Q \) must contain an \(x^3 \) and a \(y^3 \) term, or else it would violate irreducibility. First make scaling change
of coordinates of x and y so that the coefficients of x^3 and y^3 are 1. Then by making the change of coordinates $z \mapsto \lambda x + \mu y + z$, we once again complete the cube on the right-hand side (this time filling in the terms x^2y and xy^2). This produces

$$xyz = (x + y)^3.$$

Now make the change of coordinates

$$\begin{align*}
x' &= x + y \\
y' &= x - y \\
z' &= -z/4
\end{align*} \quad \text{with inverse} \quad \begin{align*}
x &= (x' + y')/2 \\
y &= (x' - y')/2 \\
z &= -4z'
\end{align*}$$

Under these change of coordinates, the equation becomes

$$(y^2 - x^2)z = x^3,$$

or equivalently $y^2z = x^2(x + z)$ as desired.

(ii) Consider the case of the nodal cubic

$$f = x^2(x + z) - y^2z = 0.$$

Then

$$\frac{\partial f}{\partial x} = 3x^3 + 2xz, \quad \frac{\partial f}{\partial y} = -2yz, \quad \frac{\partial f}{\partial z} = x^2 - y^2.$$

If the second is to vanish, then $y = 0$ or $z = 0$. If $y = 0$, then from the z-partial we get $x = 0$, so we find the point $[0 : 0 : 1]$, which is indeed singular. If $z = 0$, then from the x-partial we get $x = 0$, then from the z-partial we get $z = 0$. But then $x = y = z = 0$, which is impossible. Therefore, the only singularity is $[0 : 0 : 1]$.

For the cuspidal cubic

$$f = x^3 - y^2z = 0,$$

the partials are

$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} = -2yz, \quad \frac{\partial f}{\partial z} = -y^2.$$

If all are to vanish, then we must have $x = y = 0$, so we get the unique singular point $[0 : 0 : 1]$.

The reducible cubic given by

$$xyz = 0$$

has the three singularities $[1 : 0 : 0]$, $[0 : 1 : 0]$, and $[0 : 0 : 1]$. \qed
Problem 5. Let $C \subset \mathbb{P}^2$ be a non-singular curve, given as the zero locus of a homogeneous polynomial $f \in k[x, y, z]$. Consider the morphism
$$
\Phi : C \to \mathbb{P}^2, p \mapsto \left[\frac{\partial f}{\partial x}(p) : \frac{\partial f}{\partial y}(p) : \frac{\partial f}{\partial z}(p) \right].
$$
The image $\Phi(C) \subset \mathbb{P}^2$ is called the dual curve to C.

(i) Why is Φ a well-defined morphism? Find a geometric description of Φ, independent of coordinate choices.

(ii) If C is an irreducible conic, prove that its dual $\Phi(C)$ is also an irreducible conic. One way to prove this is to linearly change coordinates and assume the conic C is $\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0$. How does the morphism Φ change when we change coordinates?

(iii) For any five lines in \mathbb{P}^2 in general position (what does this mean?) show that there is a unique conic in \mathbb{P}^2 that is tangent to these five lines.

Answer: (i) If p is a nonsingular point of C, $\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)$ can’t be zero simultaneously. Thus Φ is well-defined. The line L_p with equation
$$
\frac{\partial f}{\partial x}(p)x + \frac{\partial f}{\partial y}(p)y + \frac{\partial f}{\partial z}(p)z = 0
$$
is the tangent line to C at p.

(ii) From previous homeworks, we’ve learned to use linear coordinate changes to make a irreducible conic inti the form
$$
\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0.
$$
If one of the $\lambda_i = 0$, the conic is reducible. So we can assume $\lambda_i \neq 0$ for all i. Then
$$
\Phi : C \to \mathbb{P}^2, [x : y : z] \mapsto [\lambda_1 x : \lambda_2 y : \lambda_3 z].
$$
Therefore, for points in the image $\Phi(C)$ we have
$$
X = \lambda_1 x, Y = \lambda_2 y, Z = \lambda_3 z, \text{ with } \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0.
$$
Thus $\Phi(C)$ is the conic
$$
\frac{1}{\lambda_1} X^2 + \frac{1}{\lambda_2} Y^2 + \frac{1}{\lambda_3} Z^2 = 0.
$$
The geometric desprcription of Φ is to send a point p to tangent lines of C at p. This is independent of coordinates. Thus, the expression of Φ after coordinate changes is the same.

(iii) Let C be an arbitrary conic. We claim that the dual of the dual of C is C. Indeed, since the description of Φ is independent of coordinates, we may first assume that C is of the form
$$
\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0.
$$
We have seen above that the dual conic becomes
\[\frac{1}{\lambda_1}X^2 + \frac{1}{\lambda_2}Y^2 + \frac{1}{\lambda_3}Z^2 = 0. \]
Dualizing once more, we recover the original conic \(C \).

Suppose \(L_i \) are 5 lines \(a_i x + b_i + c_i z = 0 \) such that the 5 points \([a_i, b_i, c_i] \in \mathbb{P}^2 \) are in general position, as defined in Problem Set 4. Let \(D \) be the unique conic passing through the 5 points \([a_i, b_i, c_i] \). Thus the dual conic of \(D \) is still a conic.

By definition, the dual conic of \(D \) in \(\mathbb{P}^2 \) is tangent to the five lines \(L_i \).

□

Problem 6. Consider the singular plane curves \(Z \) and \(W \) given by the equations
\[y^2 - x^2(x + 1) = 0 \text{ and } xy = 0 \]
respectively.

(i) Explain briefly why \(Z \) and \(W \) are not isomorphic. Explain that \((0,0)\) is an ordinary double point for both of these curves. What are the tangent directions at \((0,0)\) for \(Z \) and \(W \)? Sketch (the real points of) \(Z \) and \(W \). Do \(Z \) and \(W \) look alike near the origin?

(ii) Show that there are formal power series
\[\tilde{x} = f_1 + f_2 + f_3 + \ldots \text{ and } \quad \tilde{y} = g_1 + g_2 + g_3 + \ldots \]
in the variables \(x \) and \(y \) such that the equation of \(Z \) becomes
\[\tilde{x}\tilde{y} = 0. \]

(iii) Explain briefly why any ordinary double point singularity in \(\mathbb{A}^2 \) is analytically equivalent to the node \(\tilde{x}\tilde{y} = 0 \).

Answer:

(i) First, \(Z \) and \(W \) are not isomorphic because \(Z \) is irreducible and \(W \) is reducible.

Now, \(Z \) is defined by \(y^2 - x^2(x + 1) = 0 \). The tangent lines can be found by considering the lowest degree terms \(y^2 - x^2 \). This factors as \((y - x)(y + x)\). So the 2 tangent lines are \(y - x = 0 \) and \(y + x = 0 \).

Similarly, \(W = (xy = 0) \) is the union of two lines. The tangent lines are just these two lines \(x = 0 \) and \(y = 0 \).

(ii) We hope to find \(f_i \) and \(g_i \) such that
\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1). \]
First, compare the degree 2 terms, then
\[f_1g_1 = y^2 - x^2. \]
Hence, we can take

\[f_1 = y - x \text{ and } g_1 = y + x. \]

Comparing the degree 3 terms we have

\[-x^3 = (y - x)g_2 + (y + x)f_2. \]

The polynomials \(g_2 = x^2/2 \) and \(f_2 = -x^2/2 \) will work.

Suppose we have found \(f_i \) and \(g_i \) for \(1 \leq i \leq d - 1 \) and

\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1) \]

up to degree \(d \). Comparing degree \(d + 1 \) terms, we have:

\[f_1g_d + f_2g_{d-1} + \cdots + f dg_1 = 0. \]

Now only \(f_d \) and \(g_d \) are unknown, others are fixed, we can rearrange the equation:

\[(y - x)g_d + (y + x)f_d = -(f_2g_{d-1} + \cdots + f_{d-1}g_2). \]

Notice that

\[f_2g_{d-1} + \cdots + f_{d-1}g_2 \]

is a homogeneous polynomial of degree \(d + 1 \). Let

\[-(f_2g_{d-1} + \cdots + f_{d-1}g_2) = ax^d + yR(x, y). \]

Isolating \(x^{d+1} \) and dividing the remaining term by \(y \) to obtain \(R \), then we need

\[x(f_d - g_d) + y(f_d + g_d) = ax^{d+1} + yR(x, y) \]

This is possible by letting

\[f_d = \frac{1}{2} \left(\frac{a}{2} x^d + R(x, y) \right) \text{ and } g_d = \frac{1}{2} \left(-\frac{a}{2} x^d + R(x, y) \right) \]

Therefore we can find \(f_d \) and \(g_d \) and

\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1) \]

up to degree \(d + 1 \). Inductively, there exist

\[\tilde{x} = f_1 + f_2 + f_3 + \ldots \]

\[\tilde{y} = g_1 + g_2 + g_3 + \ldots \]

such that

\[(f_1 + f_2 + f_3 + \ldots)(g_1 + g_2 + g_3 + \ldots) = y^2 - x^2(x + 1). \]
(iii) Suppose \(C = (H = 0) \) is a curve which has an ordinary double point, we can change coordinates to assume that the singularity is at the origin. Because \(C \) has a double point at the origin,

\[
H(x, y) = H_2(x, y) + H_3(x, y) + \cdots \quad \text{deg}\, H_i = k
\]

where \(H_2 \) is a homogeneous polynomial of degree 2, with distinct factors

\[
H_2 = (ax + by)(cx + dy).
\]

Change coordinates so that

\[
x' = ax + by, \quad y' = cx + dy.
\]

In the new coordinates,

\[
H = x'y' + H'_3 + H'_4 + \ldots.
\]

By the same method as in (ii), we inductively find

\[
\hat{x} = x' + f_2 + f_3 + \ldots
\]

\[
\hat{y} = y' + g_2 + g_3 + \ldots
\]

such that

\[
H = \hat{x}\hat{y}.
\]