Math 203, Problem Set 8. Due Friday, December 8.

1. **(Degree of the Segre embedding.)** Show that the Segre embedding $\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1}$ has degree $\binom{n+m}{n}$.

2. **(Arithmetic genus.)** Let $X \subset \mathbb{P}^n$ be a projective variety with Hilbert polynomial χ_X. Define the arithmetic genus of X to be

 $$p_a(X) = (-1)^{\dim X} (\chi_X(0) - 1).$$

 (i) Show that the genus of \mathbb{P}^n is zero.
 (ii) If X is a hypersurface of degree d in \mathbb{P}^n, show that $p_a(X) = \binom{d-1}{n}$. In particular, a cubic in \mathbb{P}^2 has genus 1.
 (iii) If X is a complete intersection of two surfaces of degree a and b in \mathbb{P}^3 then

 $$p_a(X) = \frac{1}{2}ab(a + b - 4) + 1.$$

 In particular, intersection of two quadrics in \mathbb{P}^3 has genus 1.

 Remark: To compare (ii) and (iii), recall that a cubic in \mathbb{P}^2 is isomorphic to an intersection of two quadrics in \mathbb{P}^3 as shown in a previous homework.

3. **(Enumerative geometry of lines.)** Given four general lines in \mathbb{P}^3, show that there are exactly 2 lines which intersect all four of them.

 Hint: Recall that the Grassmannian $G(1, 3)$ is a quadric in \mathbb{P}^5 via the Plücker embedding.

 Remark: The number of lines in \mathbb{P}^n which intersect $2(n - 1)$ fixed general codimension 2 linear hyperplanes equals the Catalan number

 $$C_n = \frac{1}{n} \binom{2n - 2}{n - 1}.$$

4. **(Varieties of minimal degree.)** Let X be a non-degenerate (i.e., not contained in any hyperplanes) projective variety of degree d and codimension c in \mathbb{P}^n.
 (i) (Intersecting X with hyperplanes to cut down the dimension), show inductively that

 $$d \geq c + 1.$$

 (ii) The Del Pezzo-Bertini theorem classifies all varieties for which equality holds in (i).
 Here, verify that equality holds for rational normal curves in \mathbb{P}^n, and for the image $v(\mathbb{P}^2)$ of the Veronese embedding

 $$v : \mathbb{P}^2 \to \mathbb{P}^5.$$

 (iii) Can you classify the varieties of degree 2?