
Problem 1. (Semicontinuity of fiber dimensions.) Assume that \(f : X \rightarrow Y \) is a surjective morphism of projective varieties. Show that \(Y_k = \{ y \in Y : \dim f^{-1}(y) \geq k \} \) is closed.

Answer: Let \(n = \dim X, m = \dim Y \). We will use induction on \(m \), the case \(m = 0 \) being clear. Let \(d = n - m \geq 0 \). When \(k \leq d \) there is nothing to prove since \(Y_k = Y \) by the theorem of dimension of fibers. Asssume \(k > d \). Let \(U \) be an open subset over which \(\dim f^{-1}(y) = d \). The existence of \(U \) is proven in the theorem of dimension of fibers. Let \(Z = Y \setminus U \) is a closed subset of \(Y \), so \(\dim Z < \dim Z \Rightarrow \dim Z \leq m - 1 \). Note that \(Y_k \subset Z \) for \(k > d \). We wish to show that \(Y_k \) is closed in \(Z \), so then it will be closed in \(Y \) as well.

To this end, consider the restriction \(\bar{f} : W \rightarrow Z \), where \(W = f^{-1}(Z) \). We clearly have

\[
Y_k = \{ y \in Y : \dim f^{-1}(y) \geq k \} = \{ y \in Z : \dim \bar{f}^{-1}(y) \geq k \}.
\]

We use induction on the dimension of the base to conclude. Indeed, \(\dim Z \leq m - 1 \), and working with each irreducible component of \(Z \) one at a time, we may assume \(Z \) is irreducible. In this case however the domain \(W = f^{-1}(Z) \) may have components \(W_1, \ldots, W_r \). Since \(Z \) is closed, \(W_i \) are closed in \(X \) hence projective in \(X \). Let \(\bar{f}_i : W_i \rightarrow Z \) be the restricted morphism. Then

\[
Y_k = \bigcup Y_k(\bar{f}_i)
\]

where the sets of the right are calculated with respect to the morphisms \(\bar{f}_i \). By the induction hypothesis applied to \(\bar{f}_i \), it follows that \(Y_k(\bar{f}_i) \) are closed in the image of \(\bar{f}_i \) which in turn is closed in \(Z \) by projective hypothesis, hence \(Y_k \) is closed in \(Z \) as well. \(\square \)

Problem 2. (Criterion for irreducibility.) Assume that \(f : X \rightarrow Y \) is a surjective morphism of projective algebraic sets such that \(Y \) is irreducible and all fibers of \(f \) are irreducible of the same dimension. Show that \(X \) is irreducible as well.

Answer: Write \(n \) for the common dimension of the fibers. Write \(X_1, \ldots, X_r \) for the irreducible components of \(X \). Then

\[
\bigcup f(X_i) = Y
\]

and \(f(X_i) \) are closed in \(Y \) since \(f \) is a morphism of projective sets, hence a closed map. Since \(Y \) is irreducible, there exists \(i \) such that \(f(X_i) = Y \). Assume that \(X_1, \ldots, X_s \) are chosen so that

\[
f(X_1) = \ldots = f(X_s) = Y
\]

but \(f(X_j) \neq Y \) for \(j > s \). Construct \(U_1, \ldots, U_s \) nonempty open sets in \(Y \) such that

\[
y \in U_i, 1 \leq i \leq s \Rightarrow \dim(f|_{X_i})^{-1}(y) = n_i = \dim X_i - \dim Y.
\]
In fact, even for \(j > s \) we can define \(U_j = Y \setminus f(X_j) \) and for \(y \in U_j \) we have
\[
(f|_{X_j})^{-1}(y) = \emptyset.
\]
Write
\[
U = \cap_{i=1}^r U_i,
\]
which is open and nonempty. For \(y \in U \), \(f^{-1}(y) \) is irreducible and nonempty, and is covered by \(X_1, \ldots, X_r \) so it must exist \(i_0 \) such that
\[
f^{-1}(y) \subset X_{i_0}.
\]
It is clear from the choice of \(i_0 \) that the entire fiber over \(y \) can be computed in \(X_{i_0} \) so that
\[
(f|_{X_{i_0}})^{-1}(y) = f^{-1}(y) \neq \emptyset
\]
so
\[
f|_{X_{i_0}} : X_{i_0} \to Y
\]
must be surjective by the definition of \(U_{i_0} \), and \(i_0 \leq s \). Furthermore \(n = n_{i_0} \) is the common dimension of the fibers since the fiber dimension can be calculated at \(y \) and
\[
(f|_{X_{i_0}})^{-1}(y) = f^{-1}(y).
\]
If \(z \in Y \), then
\[
(f|_{X_{i_0}})^{-1}(z) \subset f^{-1}(z)
\]
and the left hand side is at least of dimension \(n_{i_0} = \dim X_{i_0} - \dim Y \) by the theorem on dimension of fibers. But \(f^{-1}(z) \) is irreducible and \(n = n_{i_0} \) dimensional, so must have equality. Thus
\[
f^{-1}(z) \subset X_{i_0}
\]
for all \(z \in Y \). This shows that there are no components in \(X \) other than \(X_{i_0} \), so \(X \) is irreducible.

\[
\square
\]

Problem 3. *(Intersections in projective space.)* Let \(X \) and \(Y \) be two subvarieties of \(\mathbb{P}^n \). Show that if \(\dim X + \dim Y \geq n \), then \(X \cap Y \) is not empty.

Answer: Let \(H_1, H_2 \) be two disjoint linear subspaces of dimension \(n \) in \(\mathbb{P}^{2n+1} \). We write \([x_0 : x_1 : \ldots : x_n : y_0 : y_1 : \ldots : y_n]\) for the homogeneous coordinates in \(\mathbb{P}^{2n+1} \). Without loss of generality, we may assume \(H_1 \) is given by the equations
\[
y_0 = y_1 = \ldots = y_n = 0,
\]
while \(H_2 \) is given by
\[
x_0 = \ldots = x_{n+1} = 0.
\]
We regard
\[
X \subset H_1 \cong \mathbb{P}^n \subset \mathbb{P}^{2n+1}, \quad Y \subset H_2 \cong \mathbb{P}^n \subset \mathbb{P}^{2n+1}
\]
as subvarieties of \(\mathbb{P}^{2n+1} \). We form the join \(J(X,Y) \) in \(\mathbb{P}^{2n+1} \).
We first prove that $J(X,Y)$ has dimension $\dim X + \dim Y + 1$. Indeed, any point P in $J(X,Y)$ lies on a line L which intersects both X and Y in two points Q and R. The map

$$f : J(X,Y) \to X \times Y, P \mapsto (Q,R)$$

is a well-defined morphism since given P, then Q and R are uniquely defined. Indeed, if $P \in J(X,Y)$ has coordinates $[p_0 : \ldots : p_{2n+1}]$ then $Q = [p_0 : \ldots : p_n : 0 \ldots : p_n]$ and $R = [0 : \ldots : 0 : p_{n+1} : \ldots : p_{2n+1}]$, as claimed. The fibers of f are lines QR, hence they are 1 dimensional. Thus

$$\dim J(X,Y) = \dim(X \times Y) + 1 = \dim X + \dim Y + 1 \geq n + 1.$$

Even stronger, by the previous problem, $J(X,Y)$ is irreducible since it fibers over the irreducible set $X \times Y$ with equidimensional fibers.

Next, let K_i be the hyperplane $x_i - y_i = 0$ for $0 \leq i \leq n$. We claim that

$$X \cap Y \cong J(X,Y) \cap K_0 \cap K_1 \cap \ldots \cap K_n.$$

Indeed, any point $P \in J(X,Y)$ lies on a line QR with $Q \in X, R \in Y$, hence

$$P = \alpha Q + \beta R = [\alpha q : \beta r],$$

where q and r are the homogeneous coordinates of Q and R in \mathbb{P}^n. The requirement that

$$P \in \bigcap_{0 \leq i \leq n} K_i$$

means that

$$\alpha q_i = \beta r_i$$

hence $Q = R$. This means $P = Q = R \in X \cap Y$, proving the above equality.

Finally, Intersecting with a hyperplane either keeps the same dimension or cuts the dimension down by 1, hence

$$\dim (J(X,Y) \cap K_0 \cap \ldots K_n) \geq 0 \implies X \cap Y \neq \emptyset.$$

□

Problem 4. (Lines on hypersurfaces.)

(i) Let $d > 2n - 3$. Show that a general degree d hypersurface in \mathbb{P}^n contains no lines.

(ii) Let f be a degree 4 homogeneous polynomial in 4 variables and let Z_f be the quartic surface $f = 0$ in \mathbb{P}^3. Show that there is a single polynomial Φ in the coefficients of f which vanishes if and only if the quartic surface $Z_f \subset \mathbb{P}^3$ contains a line.
Answer: (i) We think of a hypersurface $X = Z(f)$ as a point in projective space \mathbb{P}^N for $N = \binom{n+d}{d} - 1$, by means of the coefficients a_I of its defining equation $f = \sum a_I X^I$.

We form the incidence correspondence $J = \{(L, X) : L \subset X\} \subset G(1, n) \times \mathbb{P}^N$ and we let $p : J \to G(1, n)$, $q : J \to \mathbb{P}^N$ be the two projections.

We claim that the fibers of p have dimension $N - (d+1)$. Indeed, fix a line L and study $p^{-1}(L)$. Without loss of generality, we may assume L is given by the equations

$$x_0 = \ldots = x_{n-2} = 0.$$

If $X \in p^{-1}(L)$ is given by the polynomial $f = 0$, the requirement $L \subset X$ means $f(0 : \ldots : 0 : s : t) = 0$ for all s, t. In particular, the $d+1$ coefficients of $s^{i}t^{d-1}$ for $0 \leq i \leq d$ must vanish:

$$a_{0\ldots0,i,d-i} = 0,$$

while the other coefficients are arbitrary. Thus $p^{-1}(L)$ has codimension $d+1$ in \mathbb{P}^N, as claimed. Also the fibers of p are irreducible so J is irreducible as well by Problem 2.

With this understood, we conclude by looking at the fibers of p that

$$\dim J = \dim G(1, n) + N - (d+1) = (2n - 2) + N - (d+1) < N.$$

Therefore, the morphism q is not surjective. In particular, the image $q(J)$ is a proper subvariety of \mathbb{P}^N. For hypersurfaces X belonging to the complement $\mathbb{P}^n \setminus q(J)$, the preimage $q^{-1}(X)$ is therefore empty, or in other words, for there are no lines lying on such hypersurfaces.

(ii) In this case, we have $d = 4, n = 3, N = 34$. Let $J = \{(L, X) : L \subset X\}$. In this case, the above computation show that $\dim J = N - 1$. We claim that the image $q(J)$ is a codimension 1 subvariety of \mathbb{P}^N. We complete the proof letting Φ be a polynomial cutting out $q(J)$.

To prove $q(J)$ is of dimension 33, assume otherwise, namely that the dimension is 32 or lower. By the theorem of dimension of fibers, for all $[X] \in q(J)$, the fiber
$q^{-1}([X])$ has dimension at least $33 - 32 = 1$. In other words all quartics that contain at least one line in fact contain infinitely many lines. One example is the quartic

$$x^4 + y^4 + z^4 + w^4 = 0.$$

By symmetry, we may search for lines of the form $x = az + bw, y = cz + dw$ and substituting we find

$$(az + bw)^4 + (cz + dw)^4 + z^4 + w^4 = 0.$$

This gives

$$a^4 + c^4 + 1 = b^4 + d^4 + 1 = 0, a^2b^2 + c^2d^2 = 0, a^3b + c^3d = 0, ab^3 + cd^3 = 0.$$

We claim that there are finitely many solutions for a, b, c, d. If $a = 0$ then it is easy to conclude that $d = 0$ and b, c have to satisfy $b^4 = c^4 = -1$, and the solution set is finite. Assume now that neither a, b, c, d is zero. Then

$$a^3b = -c^3d, \quad ab^3 = -cd^3 \implies (a/b)^2 = (c/d)^2$$

and in addition $(ab)^2 = -(cd)^2$ so multiplying we find $a^4 = -c^4$ which contradicts $a^4 + c^4 = -1$.

\Box