Problem 1. Show that the Segre embedding
\[\mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1} \]
has degree \(\binom{n+m}{n}\).

Answer: Let \(\Sigma_{m,n}\) be the image of the Segre embedding. Degree \(\ell\) homogeneous polynomials on \(\mathbb{P}^{(n+1)(m+1)-1}\) restrict to \(\Sigma_{m,n}\) as polynomials in the variables \(x_i\) on \(\mathbb{P}^n\) and \(y_j\) on \(\mathbb{P}^m\), bihomogeneous of degree \(\ell\). The dimension of \(S(\Sigma_{m,n})^{(\ell)}\) then equals
\[\binom{n+m}{n} \binom{n+m}{m}. \]
Expanding, we have
\[\binom{n+m}{n} \binom{n+m}{m} = \frac{1}{n!m!} \cdot \ell^{n+m} + \text{l.o.t.} \]
which shows that the degree of \(\Sigma_{m,n}\) equals
\[\frac{(n+m)!}{n!m!} = \binom{n+m}{n}. \]
\(\square\)

Problem 2. Let \(X \subset \mathbb{P}^n\) be a projective scheme with Hilbert polynomial \(\chi_X\). Define the arithmetic genus of \(X\) to be
\[p_a(X) = (-1)^{\dim X}(\chi_X(0) - 1). \]

(i) Show that the genus of \(\mathbb{P}^n\) is zero.

(ii) If \(X\) is a hypersurface of degree \(d\) in \(\mathbb{P}^n\), show that \(p_a(X) = \binom{d-1}{n}\). In particular, a cubic in \(\mathbb{P}^2\) has genus 1.

(iii) If \(X\) is a complete intersection of two surfaces of degree \(a\) and \(b\) in \(\mathbb{P}^3\) then
\[p_a(X) = \frac{1}{2}ab(a+b-4) + 1. \]

In particular, intersection of two quadrics in \(\mathbb{P}^3\) has genus 1.

Answer: (i) We calculated the Hilbert polynomial of \(\mathbb{P}^n\) to be \(\chi(\ell) = \binom{\ell+n}{n}\). This yields immediately that \(p_a(\mathbb{P}^n) = 0\).

(ii) We calculated the Hilbert polynomial of a degree \(d\) hypersurface to be
\[\chi(\ell) = \binom{n+\ell}{n} - \binom{n+\ell-d}{n}. \]
This yields
\[p_a(X) = (-1)^{n-1}\left(1 - \binom{n-d}{n} - 1\right) = (-1)^n \binom{n-d}{n} = \binom{d-1}{n}. \]
(iii) We claim that the Hilbert polynomial of the complete intersection equals
\[
\chi(\ell) = \binom{\ell + 3}{3} - \binom{\ell + 3 - a}{3} - \binom{\ell + 3 - b}{3} + \binom{\ell + 3 - a - b}{3}.
\]
Then, we find
\[
\chi(0) = 1 - \binom{3 - a}{a} - \binom{3 - b}{b} + \binom{3 - a - b}{3}
\]
which yields the answer.

The claim about the Hilbert polynomial is justified as follows. Let \(f \) and \(g \) be the equations of the two surfaces of degree \(a \) and \(b \) in \(\mathbb{P}^3 \) whose intersection is \(X \). There is an exact sequence
\[
0 \to S(\mathbb{P}^3)^{(\ell - a - b)} \to S(\mathbb{P}^3)^{(\ell - a)} \oplus S(\mathbb{P}^3)^{(\ell - b)} \to S(\mathbb{P}^3)^{(\ell)} \to S(X)^{(\ell)} \to 0
\]
where the first two maps are given by
\[
P \mapsto (gP, fP)
\]
and
\[
(P, Q) \mapsto fP - gQ
\]
and the last map is the restriction. We conclude by considering dimensions.

\[\square\]

Problem 3. Given four general lines in \(\mathbb{P}^3 \), show that there are exactly 2 lines which intersect all four of them.

Answer: Recall that the space of lines in \(\mathbb{P}^3 \) is parametrized by the Grassmannian \(G = G(1, 3) \) which can be realized as a quadric in \(\mathbb{P}^5 \) via the Plucker embedding. For each line \(L_i \) define
\[
X_i = \{M \text{ line in } \mathbb{P}^3 : M \cap L_i \neq \emptyset\} \subset G(1, 3) \subset \mathbb{P}^5.
\]
We claim that
\[
X_i = H_i \cap G
\]
for a hyperplane \(H_i \) in \(\mathbb{P}^5 \). Indeed, working in Plucker coordinates, assume that \(L = L_i \) has coordinates \(l_{ij} \) and \(M \) has Plucker coordinates \(m_{kl} \). If these are calculated with respect to points \(A, B \) over \(L \) and points \(C, D \) on \(M \) then we have
\[
a \wedge b = \sum_{ij} l_{ij} e_i \wedge e_j
\]
\[
c \wedge d = \sum_{kl} m_{kl} e_k \wedge e_l.
\]
The requirement that \(L \) and \(M \) meet is equivalent to
\[
a \wedge b \wedge c \wedge d = 0
\]
since the vector space spanned by a, b, c, d is 3 dimensional in this case. This gives

$$
\left(\sum_{ij} l_{ij} e_i \wedge e_j \right) \wedge \left(\sum_{kl} m_{kl} e_k \wedge e_l \right) = 0
$$

which gives

$$
l_{12}m_{34} - l_{13}m_{24} + l_{14}m_{13} - l_{24}m_{34} + l_{34}m_{12} = 0.
$$

This is clearly a linear equation in the variables m_{kl} for each fixed l_{ij}.

Now, the lines M that intersect L_1, L_2, L_3, L_4 are found as the intersection points

$$
X_1 \cap X_2 \cap X_3 \cap X_4 \subset G(1, 3).
$$

In other words, these points correspond to

$$
H_1 \cap H_2 \cap H_3 \cap H_4 \cap G(1, 3) \subset \mathbb{P}^5.
$$

We claim that this intersection consists of 2 points in general.

We claim first that the intersection $H_1 \cap H_2 \cap H_3 \cap H_4$ is a line ℓ in \mathbb{P}^5 in general. In any case, the intersection is given as the null space of the 4×6 matrix of coefficients describing the hyperplanes H_i. In general, this null space is 1 dimensional, so the intersection is a line, but it can also be that the null space has dimension 2 or higher. This condition is described as the rank of the matrix being 4 or less – in turn this is given by the vanishing of the 4×4 minors, so it is a closed subset Z in the space $G \times G \times G \times G$. We assume (L_1, L_2, L_3, L_4) are chosen away from Z.

Next, if ℓ is the intersection line, we claim it intersects the quadric G in \mathbb{P}^5 in 2 points. Indeed, we may assume that after a change of coordinates, this line is given by $x_2 = x_3 = x_4 = x_5 = 0$. The quadric G will be given by $\sum a_{ij} x_i x_j$ and the intersection of the line ℓ is obtained by solving

$$
a_{00}x_0^2 + a_{11}x_1^2 + a_{01}x_0x_1 = 0
$$

which has exactly two solutions. The only exceptions correspond to

$$
a_{01}^2 = 4a_{00}a_{11}
$$

which corresponds to one solution, or the case $a_{00} = a_{01} = a_{11} = 0$ which corresponds to infinitely many solutions. These are closed conditions determining a closed set W as one can check.

Setting $U = G \setminus (Z \cup W)$ we obtain that for (L_1, L_2, L_3, L_4) in U, there are exactly 2 lines intersecting L_i. Then U is dense in $G \times G \times G \times G$ if nonempty. To show nonemptiness, we can pick 4 lines

$$
L_1 = \{x_0 = x_1 = 0\}, L_2 = \{x_0 = x_2 = 0\}, L_3 = \{x_0 + x_1 = x_2 + x_3 = 0\}, L_4 = \{x_0 + 2x_1 = x_2 + 2x_3 = 0\}.
$$
We claim this quadruple lies in U. Indeed, one can easily run the argument above to find the equations of the hyperplanes H_1, H_2, H_3, H_4 above in terms of the Plucker coordinates. We obtain

$$m_{01} = 0, m_{02} = 0, m_{13} + m_{03} + m_{12} + m_{02} = 0, 4m_{13} + 2m_{03} + 2m_{12} + m_{02} = 0.$$

We also have

$$m_{01}m_{23} - m_{02}m_{13} + m_{03}m_{12} = 0$$

for the equation of the quadric. These equations only have 2 common solutions as one checks immediately.

Problem 4. Let X be a non-degenerate (i.e., not contained in any hyperplanes) projective variety of degree d and codimension c in \mathbb{P}^n.

(i) (Intersecting X with hyperplanes to cut down the dimension), show inductively that

$$d \geq c + 1.$$

(iii) Show that equality holds for rational normal curves in \mathbb{P}^n, and for the image $v(\mathbb{P}^2)$ of the Veronese embedding

$$v : \mathbb{P}^2 \to \mathbb{P}^5.$$

(iii) Can you classify the varieties of degree 2?

Answer:

(i) Consider a hyperplane H and consider the scheme $X \cap H$. By Bezout this has the same degree d as X, and it has codimension c in H, hence the inequality to prove for X is equivalent to the inequality to prove for $X \cap H$ (which is still nondegenerate). By induction, we reduce to the case when X consists of d points in \mathbb{P}^n. In this case, we need to show $d \geq n + 1$ which is clear since if $d \leq n$, then X would be degenerate, as any n points are contained in a hyperplane H. This last statement can be seen by arranging that the n points be $p_i = [0 : \ldots : 1 : 0 : \ldots : 0]$ for $0 \leq i \leq n - 1$, after a linear change of coordinates, and setting $H = \{x_n = 0\}$.

(ii) Both cases are particular examples of the Veronese embedding whose degree we calculate below.

Consider Veronese embedding

$$v_d : \mathbb{P}^n \to \mathbb{P}^N$$

constructed from degree d monomials. We claim that the image V_d has degree d^n. Indeed, degree ℓ polynomials in $N + 1$ variables become, after restricting to V_d, polynomials of degree $d\ell$ on \mathbb{P}^n. Hence the Hilbert function of V_d equals

$$\chi(\ell) = \binom{d\ell + n}{n} = d^n \frac{\ell^n}{n!} + \text{l.o.t.}$$
confirming the claim.

Now, it is easy to see that

\[d^n = \text{codim } V_d + 1 = \binom{d+n}{n} - n \]

holds for \(n = 1 \) or for \(d = n = 2 \).

(iii) After passing to a smaller projective space, we may assume that \(X \) is nondegenerate. Degree \(d = 2 \) forces \(c = 1 \) hence \(X \) is isomorphic to a projective quadric.