Math 203, Problem Set 2. Due Friday, October 12.

For this problem set, you may assume that the ground field is \(k = \mathbb{C} \).

1. An algebraic set \(Z \subset \mathbb{A}^2 \) defined by an irreducible polynomial \(f \) of degree 2 is called an irreducible conic.

 (i) Show that any irreducible conic can be written in the form
 \[
 Y - X^2 = 0 \text{ or } XY - 1 = 0
 \]
 after an affine change of coordinates in \(\mathbb{A}^2 \).

 \textbf{Remark:} An affine change of coordinates taking \((x, y)\) into \((X, Y)\) is a transformation of the form
 \[
 \begin{pmatrix} X \\ Y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} + b,
 \]
 where \(A \) is a \(2 \times 2 \) invertible matrix and \(b \in \mathbb{A}^2 \) is a vector.

 \textbf{Hint:} Write \(f(x, y) = a_1 x^2 + a_2 y^2 + a_3 xy + a_4 x + a_5 y + a_6 \), and complete the square.

 (ii) Let \(Z_1 \) and \(Z_2 \) be two distinct irreducible conics in \(\mathbb{A}^2 \). Using (i), show that \(Z_1 \) and \(Z_2 \) intersect in at most 4 points. Can you give examples of conics which intersect in 0, 1, 2, 3 or 4 points?

2. Find the coordinate rings of the following affine algebraic sets and decide which of the following algebraic sets are isomorphic, and which ones are not:

 (i) \(\mathbb{A}^1 \)
 (ii) \(Z(xy) \subset \mathbb{A}^2 \)
 (iii) \(Z(x^2 + y^2) \subset \mathbb{A}^2 \)
 (iv) \(Z(x^2 - y^5) \subset \mathbb{A}^2 \)
 (v) \(Z(y - x^2, z - x^3) \subset \mathbb{A}^3 \).

3. (\textit{Hartogs theorem and quasi-affine algebraic sets.}) Show that the quasi-affine set \(X = \mathbb{A}^2 \setminus \{(0, 0)\} \) is not isomorphic to an affine algebraic set.

 \textbf{Hint:} Argue by contradiction. Using your knowledge about the regular functions on \(X \), what can you say about the inclusion \(\iota : X \to \mathbb{A}^2 \)?

4. Let \(n \geq 2 \), and let \(S = \{a_1, \ldots, a_n\} \) be a finite set with \(n \) elements in \(\mathbb{A}^1 \).
(i) Show that the quasi-affine set $\mathbb{A}^1 \setminus S$ is isomorphic to an affine set. For instance, you may take X to be the affine algebraic set given by the equations

$$X_1(X_0 - a_1) = \ldots = X_n(X_0 - a_n) = 1.$$

(ii) Show that $\mathbb{A}^1 \setminus S$ is not isomorphic to $\mathbb{A}^1 \setminus \{0\}$ by proving that their rings of regular functions are not isomorphic.

Hint: Assume that $\Phi : A(X) \rightarrow k[t, t^{-1}]$ is an isomorphism. Observe that X_i are invertible elements in $A(X)$ for all $1 \leq i \leq n$. Show that their images must be invertible in $k[t, t^{-1}]$. Prove that this implies that $\Phi(X_i) = t^{m_i}$ for some integers m_i. Derive a contradiction by comparing $\Phi(X_0 - a_i)$ for different values of i.

5. Let $n \geq 2$. Consider the affine algebraic sets in \mathbb{A}^2:

$$Z_n = \mathbb{Z}(y^n - x^{n+1})$$

and

$$W_n = \mathbb{Z}(y^n - x^n(x + 1)).$$

Show that Z_n and W_n are birational but not isomorphic.

(i) Show that

$$f : \mathbb{A}^1 \rightarrow Z_n, \quad f(t) = (t^n, t^{n+1})$$

is a morphism of affine algebraic sets which establishes an isomorphism between the open subsets

$$\mathbb{A}^1 \setminus \{0\} \rightarrow Z_n \setminus \{(0, 0)\}.$$

Similarly, show that

$$g : \mathbb{A}^1 \rightarrow W_n, \quad g(t) = (t^n - 1, t^{n+1} - t)$$

is a morphism of affine algebraic sets. Find open subsets of \mathbb{A}^1 and W_n where g becomes an isomorphism.

(ii) Using (i), explain why Z_n and W_n are birational.

(iii) Assume that there exists an isomorphism

$$h : Z_n \rightarrow W_n$$

such that $h((0, 0)) = (0, 0)$. Observe that this induces an isomorphism between the open sets

$$Z_n \setminus \{(0, 0)\} \rightarrow W_n \setminus \{(0, 0)\}.$$

Use part (i) and the previous problem to conclude this cannot be true if $n \geq 2$.

(iv) *(Optional.*) Repeat the argument above without the assumption that h sends the origin to itself. You may need to prove a stronger version of Problem 4.

6. *(Quotients.*) Taking quotients in algebraic geometry is subtle. We will explain how to take quotients by finite groups.

Let X be an affine variety, and let G be a finite group. Assume that G acts on X algebraically, i.e. that for every $g \in G$, we are given a morphism $g : X \to X$ (denoted by the same letter for simplicity of notation), such that

$$(gh)(p) = g(h(p))$$

for all $g, h \in G$ and $p \in X$.

(i) Let $g \in G$ act on the coordinate rings $A(X)$ via

$$f \mapsto f^g$$

with $f^g(p) = f(g(p))$.

Let $A(X)^G$ be the subalgebra of $A(X)$ consisting of all G-invariant functions on X. Show that $A(X)^G$ is a finitely generated k-algebra.

(ii) By (i), there is an affine variety Y with coordinate ring $A(X)^G$, together with a morphism

$$\pi : X \to Y$$

determined by the inclusion

$$A(X)^G \hookrightarrow A(X).$$

Show that Y can be considered as the quotient of X by G, denoted X/G, in the following sense: if $p, q \in X$ then $\pi(p) = \pi(q)$ if and only if there is a $g \in G$ such that $g(p) = q$.

(iii) Let

$$\mu_n = \left\{ \exp \left(\frac{2\pi i k}{n} \right), k \in \mathbb{Z} \right\}$$

be the group of n-th roots of unity. Let μ_n act on \mathbb{C}^m by multiplication in each coordinate. Describe \mathbb{C}/μ_n and \mathbb{C}^2/μ_n as affine algebraic sets.