Last time

- We seek to resolve singularities of X:
 - $f : Y \to X$ proper birational
Last time

- We seek to resolve singularities of X:
 - $f : Y \to X$ proper birational
 - Y smooth
Last time

- We seek to resolve singularities of X:
 - $f : Y \to X$ proper birational
 - Y smooth

Composition of blowups!!
Last time

- We seek to **resolve** singularities of X:
 - $f : Y \to X$ proper birational
 - Y smooth

Composition of **blowups**!!

- **Further motivation:** If $f : X \dasharrow Y$ we use **blowups** to extend to regular

$$\tilde{f} : \tilde{X} \to Y.$$
Last time

- We seek to resolve singularities of X:
 - $f : Y \to X$ proper birational
 - Y smooth

Composition of blowups!!

- Further motivation: If $f : X \to Y$ we use blowups to extend to regular

$$\tilde{f} : \tilde{X} \to Y.$$
Blowups – outline:

- Simplified discussion for blowup of \mathbb{A}^2 at (0, 0)
Blowups – outline:

- Simplified discussion for blowup of \mathbb{A}^2 at $(0, 0)$
- Blowup of \mathbb{A}^n at the origin
Blowups – outline:

- **Simplified** discussion for blowup of \mathbb{A}^2 at $(0, 0)$
- **Blowup** of \mathbb{A}^n at the origin
- Blowups of *affine* varieties
Blowups – outline:

- **Simplified** discussion for blowup of \mathbb{A}^2 at $(0, 0)$
- **Blowup** of \mathbb{A}^n at the origin
- Blowups of *affine* varieties
- **General** varieties
Blowups – outline:

- **Simplified** discussion for blowup of \mathbb{A}^2 at $(0, 0)$
- Blowup of \mathbb{A}^n at the origin
- Blowups of affine varieties
- General varieties
- Examples

Terminology: strict transform, exceptional set
Blowups – outline:

- **Simplified** discussion for blowup of \mathbb{A}^2 at $(0, 0)$
- **Blowup** of \mathbb{A}^n at the origin
- Blowups of *affine* varieties
- General varieties
- Examples

Terminology: strict transform, exceptional set
Blowups – outline:

- Simplified discussion for blowup of \mathbb{A}^2 at $(0,0)$
- Blowup of \mathbb{A}^n at the origin
- Blowups of affine varieties
- General varieties
- Examples

Terminology: strict transform, exceptional set
Blowup = Éclatement (french)
Blowup = Éclatement (french)
Blowup of the plane (simplified)

- **Blowup morphism**

\[\pi : \mathbb{A}^2 \to \mathbb{A}^2, \ (u, v) \mapsto (u, uv) \]
Blowup of the plane (simplified)

- Blowup morphism

\[\pi : \mathbb{A}^2 \to \mathbb{A}^2, \ (u, v) \mapsto (u, uv) \]

with rational inverse

\[\pi^{-1} : \mathbb{A}^2 \to \mathbb{A}^2, \ (x, y) \mapsto \left(x, \frac{y}{x} \right). \]
Blowup of the plane (simplified)

- Blowup morphism

\[\pi : \mathbb{A}^2 \to \mathbb{A}^2, \ (u, v) \mapsto (u, uv) \]

with rational inverse

\[\pi^{-1} : \mathbb{A}^2 \to \mathbb{A}^2, \ (x, y) \mapsto \left(x, \frac{y}{x}\right). \]

- Exceptional line:

\[\ell = \{u = 0\} \]
Blowup of the plane (simplified)

- Blowup morphism

\[\pi : \mathbb{A}^2 \to \mathbb{A}^2, \quad (u, v) \mapsto (u, uv) \]

with rational inverse

\[\pi^{-1} : \mathbb{A}^2 \dashrightarrow \mathbb{A}^2, \quad (x, y) \mapsto \left(x, \frac{y}{x} \right). \]

- Exceptional line:

\[\ell = \{ u = 0 \} \implies \pi(\ell) = (0, 0) \]
Blowup of the plane (simplified)

- Blowup morphism

\[\pi : \mathbb{A}^2 \to \mathbb{A}^2, \ (u, v) \mapsto (u, uv) \]

with rational inverse

\[\pi^{-1} : \mathbb{A}^2 \to \mathbb{A}^2, \ (x, y) \mapsto \left(x, \frac{y}{x} \right) . \]

- Exceptional line:

\[\ell = \{ u = 0 \} \implies \pi(\ell) = (0, 0) \]
Strict transform

Let C be a curve through 0 of multiplicity m:
Strict transform

Let C be a curve through 0 of multiplicity m:

$$f(x, y) = \sum_{i+j=m} a_{ij} x^i y^j + \text{h. o. t}$$
Strict transform

Let C be a curve through 0 of multiplicity m:

$$f(x, y) = \sum_{i+j=m} a_{ij}x^i y^j + \text{h. o. t}$$

Question: what is $\pi^{-1}(C)$?
Strict transform

Let C be a curve through 0 of multiplicity m:

$$f(x, y) = \sum_{i+j=m} a_{ij} x^i y^j + \text{h. o. t}$$

Question: what is $\pi^{-1}(C)$?

Answer: $\pi^{-1}(C) = m \cdot \ell + \tilde{C}$
Strict transform

Let C be a curve through 0 of multiplicity m:

$$f(x, y) = \sum_{i+j=m} a_{ij}x^i y^j + \text{h. o. t}$$

Question: what is $\pi^{-1}(C)$?

Answer: $\pi^{-1}(C) = m \cdot \ell + \tilde{C}$

$\tilde{C} =$ closure of $\pi^{-1}(C \setminus \{0\}) =$ strict transform of C
Strict transform

Let C be a curve through 0 of multiplicity m:

$$f(x, y) = \sum_{i+j=m} a_{ij}x^iy^j + \text{h. o. t}$$

Question: what is $\pi^{-1}(C)$?

Answer: $\pi^{-1}(C) = m \cdot \ell + \tilde{C}$

$\tilde{C} = \text{closure of } \pi^{-1}(C \setminus \{0\}) = \text{strict transform of } C$
Strict transform

\[\pi^{-1}(C) = \{(u, v) : f(u, uv) = 0\} \]
Strict transform

\[\pi^{-1}(C) = \{(u, v) : f(u, uv) = 0\} \]

\[f(u, uv) = \sum_{i+j=m} u^i \cdot (uv)^j + \text{h. o. t.} = u^m \cdot \tilde{f}(u, v) \]
Strict transform

\[\pi^{-1}(C) = \{(u, v) : f(u, uv) = 0\} \]

\[f(u, uv) = \sum_{i+j=m} u^i \cdot (uv)^j + \text{h. o. t.} = u^m \cdot \tilde{f}(u, v) \]

\[\tilde{f}(u, v) = \sum_{j=0}^{m} a_{ij} v^j + \text{terms involving } u \]
Strict transform

$$\pi^{-1}(C) = \{(u, v) : f(u, uv) = 0\}$$

$$f(u, uv) = \sum_{i+j=m} u^i \cdot (uv)^j + \text{h. o. t.} = u^m \cdot \tilde{f}(u, v)$$

$$\tilde{f}(u, v) = \sum_{j=0}^{m} a_{ij}v^j + \text{terms involving } u = f^{(in)}(1, v) + \text{terms involving } u.$$

$$\tilde{C} = \{\tilde{f}(u, v) = 0\}$$
Strict transform

\[\pi^{-1}(C) = \{ (u, v) : f(u, uv) = 0 \} \]

\[f(u, uv) = \sum_{i+j=m} u^i \cdot (uv)^j + \text{h. o. t.} = u^m \cdot \tilde{f}(u, v) \]

\[\tilde{f}(u, v) = \sum_{j=0}^{m} a_{ij} v^j + \text{terms involving } u = f^{(in)}(1, v) + \text{terms involving } u. \]

\[\tilde{C} = \{ \tilde{f}(u, v) = 0 \} \]
\tilde{C} \cap \ell = \{ f^{in}(1, \nu) = 0 \} = \left\{ \prod_{k} (\alpha_k + \beta_k \nu) = 0 \right\} = \left\{ -\frac{\alpha_k}{\beta_k} \right\}
Exceptional line

\[\tilde{C} \cap \ell = \{ f^{in}(1, \nu) = 0 \} = \left\{ \prod_{k} (\alpha_k + \beta_k \nu) = 0 \right\} = \left\{ -\frac{\alpha_k}{\beta_k} \right\} \]

- correspond to the slopes of the tangent directions
Exceptional line

\[\tilde{C} \cap \ell = \{ f^{in}(1, \nu) = 0 \} = \left\{ \prod_{k} (\alpha_k + \beta_k \nu) = 0 \right\} = \left\{ -\frac{\alpha_k}{\beta_k} \right\} \]

- correspond to the slopes of the tangent directions

Remarks:

- \(\pi : \tilde{C} \to C \) birational
Exceptional line

\[\tilde{C} \cap \ell = \{ f^{in}(1, \nu) = 0 \} = \left\{ \prod_k (\alpha_k + \beta_k \nu) = 0 \right\} = \left\{ -\frac{\alpha_k}{\beta_k} \right\} \]

- correspond to the slopes of the tangent directions

Remarks:

- \(\pi : \tilde{C} \rightarrow C \) birational
- \(C, D \) have distinct tangent directions at 0, \(C \cap D = \{0\} \)
Exceptional line

\[\widetilde{C} \cap \ell = \{ f^{in}(1, \nu) = 0 \} = \left\{ \prod_{k} (\alpha_k + \beta_k \nu) = 0 \right\} = \left\{ -\frac{\alpha_k}{\beta_k} \right\} \]

- correspond to the slopes of the tangent directions

Remarks:

- \(\pi : \widetilde{C} \to C \) birational
- \(C, D \) have distinct tangent directions at 0, \(C \cap D = \{0\} \)

\[\widetilde{C} \cap \widetilde{D} = \emptyset \implies \text{strict transforms separated} \]
Figure: Blowing up the plane
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^2(u + 1) \implies \tilde{C} = \{ v^2 = u + 1 \} \]

is smooth.
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^2(u + 1) \implies \tilde{C} = \{ v^2 = u + 1 \} \]

is smooth.

Example: Tacnode:

\[C = \{ y^2 = x^4 + x^5 \} \subset \mathbb{A}^2. \]
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^2(u + 1) \implies \tilde{C} = \{ v^2 = u + 1 \} \]

is smooth.

Example: Tacnode:

\[C = \{ y^2 = x^4 + x^5 \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^4 + u^5 \implies \tilde{C} = \{ v^2 = u^2(u + 1) \} \]
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^2(u + 1) \implies \tilde{C} = \{ v^2 = u + 1 \} \]

is smooth.

Example: Tacnode:

\[C = \{ y^2 = x^4 + x^5 \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^4 + u^5 \implies \tilde{C} = \{ v^2 = u^2(u + 1) \} \]

One more blowup resolves the singularity.
Example: Node:

\[C = \{ y^2 = x^2(x + 1) \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^2(u + 1) \implies \tilde{C} = \{ v^2 = u + 1 \} \]

is smooth.

Example: Tacnode:

\[C = \{ y^2 = x^4 + x^5 \} \subset \mathbb{A}^2. \]

Strict transform

\[(uv)^2 = u^4 + u^5 \implies \tilde{C} = \{ v^2 = u^2(u + 1) \} \]

One more blowup resolves the singularity.
Blowup of \mathbb{A}^n

$p = (0, \ldots, 0),$

$\widetilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad \widetilde{\mathbb{A}}^n = \{x_i y_j - x_j y_i = 0\}, \quad x \in \mathbb{A}^n, \ y \in \mathbb{P}^{n-1}$
Blowup of \mathbb{A}^n

$p = (0, \ldots, 0),$

$\mathring{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad \mathring{\mathbb{A}}^n = \{x_iy_j - x_jy_i = 0\}, \quad x \in \mathbb{A}^n, y \in \mathbb{P}^{n-1}$

$\pi : \mathring{\mathbb{A}}^n \to \mathbb{A}^n, \ (x, y) \mapsto x$
Blowup of \mathbb{A}^n

$p = (0, \ldots, 0),$

$\tilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad \tilde{\mathbb{A}}^n = \{x_i y_j - x_j y_i = 0\}, \ x \in \mathbb{A}^n, y \in \mathbb{P}^{n-1}$

$\pi : \tilde{\mathbb{A}}^n \to \mathbb{A}^n, \ (x, y) \mapsto x$

$E = \pi^{-1}(0) = \{0\} \times \mathbb{P}^{n-1} = \text{exceptional hypersurface}$
Blowup of \mathbb{A}^n

\[p = (0, \ldots, 0), \]

\[\widetilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad \widetilde{\mathbb{A}}^n = \{ x_i y_j - x_j y_i = 0 \}, \quad x \in \mathbb{A}^n, y \in \mathbb{P}^{n-1} \]

\[\pi : \widetilde{\mathbb{A}}^n \to \mathbb{A}^n, \quad (x, y) \mapsto x \]

\[E = \pi^{-1}(0) = \{ 0 \} \times \mathbb{P}^{n-1} = \text{exceptional hypersurface} \]

\[\pi^{-1}(x) = (x, [x]) \in \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad x \neq 0 \]
Blowup of \(\mathbb{A}^n \)

\[p = (0, \ldots, 0), \]

\(\widetilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad \widetilde{\mathbb{A}}^n = \{x_iy_j - x_jy_i = 0\}, \quad x \in \mathbb{A}^n, \ y \in \mathbb{P}^{n-1} \)

\[\pi : \widetilde{\mathbb{A}}^n \to \mathbb{A}^n, \ (x, y) \mapsto x \]

\[E = \pi^{-1}(0) = \{0\} \times \mathbb{P}^{n-1} = \text{exceptional hypersurface} \]

\[\pi^{-1}(x) = (x, [x]) \in \mathbb{A}^n \times \mathbb{P}^{n-1}, \quad x \neq 0 \]
Remark: L line spanned by (a_1, \ldots, a_n)
Remark: L line spanned by (a_1, \ldots, a_n)

- $\pi^{-1}(L \setminus \{0\}) = \{(\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n], \lambda \neq 0\}$
Remark: \(L \) line spanned by \((a_1, \ldots, a_n)\)

\[\pi^{-1}(L \setminus \{0\}) = \{ (\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n], \lambda \neq 0 \} \]

\[\tilde{L} = \overline{\pi^{-1}(L \setminus \{0\})} = \{ (\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n] \} \]
Remark: L line spanned by (a_1, \ldots, a_n)

- $\pi^{-1}(L \setminus \{0\}) = \{(\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n], \lambda \neq 0\}$
- $\tilde{L} = \pi^{-1}(L \setminus \{0\}) = \{(\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n]\}$
- $\tilde{L} \cap E = \{[a_1 : \ldots : a_n]\}$
Remark: \(L \) line spanned by \((a_1, \ldots, a_n)\)

\[
\pi^{-1}(L \setminus \{0\}) = \{ (\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n], \lambda \neq 0 \}
\]

\[
\tilde{L} = \pi^{-1}(L \setminus \{0\}) = \{ (\lambda a_1, \ldots, \lambda a_n), [a_1 : \ldots : a_n] \}
\]

\[
\tilde{L} \cap E = \{ [a_1 : \ldots : a_n] \}
\]
Affine cover

\[\widetilde{\mathbb{A}}^n = \bigcup_{i} U_i, \quad U_i = \{(x, y) : y_i \neq 0\} \]
Affine cover

\[\tilde{\mathbb{A}}^n = \bigcup_i U_i, \quad U_i = \{(x, y) : y_i \neq 0\} \]

\[U_1 \simeq \mathbb{A}^n, \quad (x, y) \mapsto (x_1, y_2, \ldots, y_n) \]
Affine cover

\[\mathbb{A}^n = \bigcup_{i} U_i, \quad U_i = \{(x, y) : y_i \neq 0\} \]

\[U_1 \cong \mathbb{A}^n, \quad (x, y) \mapsto (x_1, y_2, \ldots, y_n) \]

inverse \((x_1, y_2, \ldots, y_n) \mapsto (x_1, x_1y_2, \ldots, x_1y_n, [1 : y_2 : \ldots : y_n]) \)
Affine cover

$$\widetilde{\mathbb{A}}^n = \bigcup_i U_i, \quad U_i = \{(x, y) : y_i \neq 0\}$$

$$U_1 \simeq \mathbb{A}^n, \ (x, y) \mapsto (x_1, y_2, \ldots, y_n)$$

inverse \((x_1, y_2, \ldots, y_n) \mapsto (x_1, x_1y_2, \ldots, x_1y_n, [1 : y_2 : \ldots : y_n]) \)

$$\widetilde{\mathbb{A}}^n$$ is a prevariety
Affine cover

\[\tilde{\mathbb{A}}^n = \bigcup_i U_i, \quad U_i = \{(x, y) : y_i \neq 0\} \]

\[U_1 \simeq \mathbb{A}^n, \quad (x, y) \mapsto (x_1, y_2, \ldots, y_n) \]

inverse \((x_1, y_2, \ldots, y_n) \mapsto (x_1, x_1y_2, \ldots, x_1y_n, [1: y_2: \ldots : y_n])\)

\[\tilde{\mathbb{A}}^n \text{ is a prevariety} \]

Example: When \(n = 2 \),

\[U_1 \simeq \mathbb{A}^2, \quad (x_1, y_2) \mapsto (x_1, x_1y_2) \]

studied previously.
Affine cover

\[\tilde{\mathbb{A}}^n = \bigcup_i U_i, \quad U_i = \{(x, y) : y_i \neq 0\} \]

\[U_1 \simeq \mathbb{A}^n, \quad (x, y) \mapsto (x_1, y_2, \ldots, y_n) \]

inverse \((x_1, y_2, \ldots, y_n) \mapsto (x_1, x_1y_2, \ldots, x_1y_n, [1 : y_2 : \ldots : y_n])\)

\[\tilde{\mathbb{A}}^n \text{ is a prevariety} \]

Example: When \(n = 2 \),

\[U_1 \simeq \mathbb{A}^2, \quad (x_1, y_2) \mapsto (x_1, x_1y_2) \]

studied previously.
General construction

- Data

\[X \subset \mathbb{A}^n, \; Y = \{f_1 = \ldots = f_r = 0\} \subset X, \; U = X \setminus Y \]
General construction

▶ Data

\[X \subset \mathbb{A}^n, \ Y = \{ f_1 = \ldots = f_r = 0 \} \subset X, \ U = X \setminus Y \]

▶ Construction

\[f : X \rightarrow \mathbb{P}^{r-1}, \ f(x) = [f_1(x) : \ldots : f_r(x)] \text{ defined over } U \]
General construction

- **Data**

\[X \subset \mathbb{A}^n, \quad Y = \{ f_1 = \ldots = f_r = 0 \} \subset X, \quad U = X \setminus Y \]

- **Construction**

\[f : X \rightarrow \mathbb{P}^{r-1}, \quad f(x) = [f_1(x) : \ldots : f_r(x)] \text{ defined over } U \]

- **Graph**

\[\Gamma_f \subset U \times \mathbb{P}^{r-1} \]
General construction

Data

\[X \subset \mathbb{A}^n, \ Y = \{ f_1 = \ldots = f_r = 0 \} \subset X, \ U = X \setminus Y \]

Construction

\[f : X \rightarrow \mathbb{P}^{r-1}, \ f(x) = [f_1(x) : \ldots : f_r(x)] \] defined over \(U \)

Graph

\[\Gamma_f \subset U \times \mathbb{P}^{r-1} \implies \tilde{X} = \Gamma_f \hookrightarrow X \times \mathbb{P}^{r-1} \]
General construction

- **Data**

\[X \subset \mathbb{A}^n, \quad Y = \{ f_1 = \ldots = f_r = 0 \} \subset X, \quad U = X \setminus Y \]

- **Construction**

\[f : X \rightarrow \mathbb{P}^{r-1}, \quad f(x) = [f_1(x) : \ldots : f_r(x)] \text{ defined over } U \]

- **Graph**

\[\Gamma_f \subset U \times \mathbb{P}^{r-1} \quad \implies \quad \tilde{X} = \Gamma_f \hookrightarrow X \times \mathbb{P}^{r-1} \]

- **\(\pi : \tilde{X} \rightarrow X \)** induced by \(\Gamma_f \subset X \times \mathbb{P}^{r-1} \rightarrow X \)
General construction

- **Data**

 \[X \subset \mathbb{A}^n, \quad Y = \{ f_1 = \ldots = f_r = 0 \} \subset X, \quad U = X \setminus Y \]

- **Construction**

 \[f : X \rightarrow \mathbb{P}^{r-1}, \quad f(x) = [f_1(x) : \ldots : f_r(x)] \text{ defined over } U \]

- **Graph**

 \[\Gamma_f \subset U \times \mathbb{P}^{r-1} \quad \implies \quad \tilde{X} = \Gamma_f \hookrightarrow X \times \mathbb{P}^{r-1} \]

- **\(\pi : \tilde{X} \rightarrow X \) induced by \(\Gamma_f \subset X \times \mathbb{P}^{r-1} \rightarrow X \)**
General construction

\[\Gamma_f \cong U \implies \Gamma_f \text{ irreducible} \implies \tilde{X} \text{ irreducible} \]
General construction

\[\Gamma_f \simeq U \implies \Gamma_f \text{ irreducible} \implies \tilde{X} \text{ irreducible} \]

\[\pi \text{ isomorphism} \Gamma_f \simeq U \implies \pi \text{ birational} \]
General construction

\[\Gamma_f \simeq U \implies \Gamma_f \text{ irreducible} \implies \tilde{X} \text{ irreducible} \]

\[\pi \text{ isomorphism} \Gamma_f \simeq U \implies \pi \text{ birational} \]

\[\tilde{f} : \tilde{X} \rightarrow \mathbb{P}^{r-1} \text{ resolves } f : X \rightarrow \mathbb{P}^{r-1} \]
General construction

\[\Gamma_f \simeq U \implies \Gamma_f \text{ irreducible} \implies \tilde{X} \text{ irreducible} \]

\[\pi \text{ isomorphism} \Gamma_f \simeq U \implies \pi \text{ birational} \]

\[\tilde{f} : \tilde{X} \to \mathbb{P}^{r-1} \text{ resolves } f : X \to \mathbb{P}^{r-1} \]
Terminology: Exceptional hypersurface

$$E = \pi^{-1}(Z)$$
Terminology: Exceptional hypersurface

\[E = \pi^{-1}(Z) \]

Strict transform

\[\tilde{Z} = \overline{\pi^{-1}(Z \setminus Y)} \]
Terminology: Exceptional hypersurface

\[E = \pi^{-1}(Z) \]

Strict transform

\[\tilde{Z} = \overline{\pi^{-1}(Z \setminus Y)} \]

Extreme case:

\[r = 1 \implies \tilde{X} = X \]
Terminology: Exceptional hypersurface

\[E = \pi^{-1}(Z) \]

Strict transform

\[\tilde{Z} = \pi^{-1}(Z \setminus Y) \]

Extreme case:

\[r = 1 \implies \tilde{X} = X \]

Extreme case:

\[X = Y \implies \tilde{X} = \emptyset \text{ since } U = \emptyset \]
Terminology: Exceptional hypersurface

\[E = \pi^{-1}(Z) \]

Strict transform

\[\tilde{Z} = \pi^{-1}(Z \setminus Y) \]

Extreme case:

\[r = 1 \implies \tilde{X} = X \]

Extreme case:

\[X = Y \implies \tilde{X} = \emptyset \text{ since } U = \emptyset \]
Equations for the blowup

Lemma

\[\tilde{X} \subset \{(x, y) \in X \times \mathbb{P}^{r-1} : y_i f_j(x) = y_j f_i(x)\} \]

Proof: Over \(U \):

\[\Gamma_f = \{(x, y) : y = f(x)\} = \{y_i f_j(x) = y_j f_i(x)\} \]

Remark: This recovers \(\tilde{\mathbb{A}}^n \) for \(f_i(x) = x_i, \ X = \mathbb{A}^n, \ Y = \{0\} \).

BEWARE!!! Equality may not hold above.
Equations for the blowup

Lemma

\[\tilde{X} \subset \{(x, y) \in X \times \mathbb{P}^{r-1} : y_i f_j(x) = y_j f_i(x)\} \]

Proof: Over \(U \):

\[\Gamma_f = \{(x, y) : y = f(x)\} = \{y_i f_j(x) = y_j f_i(x)\} \]

Thus the same equations hold over \(\tilde{X} = \Gamma_f \).
Equations for the blowup

Lemma

\[\tilde{X} \subset \{(x, y) \in X \times \mathbb{P}^{r-1} : y_i f_j(x) = y_j f_i(x)\} \]

Proof: Over \(U \):

\[\Gamma_f = \{(x, y) : y = f(x)\} = \{y_i f_j(x) = y_j f_i(x)\} \]

Thus the same equations hold over \(\tilde{X} = \Gamma_f \).

Remark: This recovers \(\mathbb{A}^n \) for \(f_i(x) = x_i \), \(X = \mathbb{A}^n \), \(Y = \{0\} \).
Equations for the blowup

Lemma

\[\tilde{X} \subset \{ (x, y) \in X \times \mathbb{P}^{r-1} : y_i f_j(x) = y_j f_i(x) \} \]

Proof: Over \(U \):

\[\Gamma_f = \{ (x, y) : y = f(x) \} = \{ y_i f_j(x) = y_j f_i(x) \} \]

Thus the same equations hold over \(\tilde{X} = \Gamma_f \).

Remark: This recovers \(\mathbb{A}^n \) for \(f_i(x) = x_i \), \(X = \mathbb{A}^n \), \(Y = \{0\} \).

BEWARE!!! Equality may not hold above.
Equations for the blowup

Lemma

\[\tilde{X} \subset \{(x, y) \in X \times \mathbb{P}^{r-1} : y_i f_j(x) = y_j f_i(x) \} \]

Proof: Over \(U \):

\[\Gamma_f = \{(x, y) : y = f(x)\} = \{y_i f_j(x) = y_j f_i(x)\} \]

Thus the same equations hold over \(\tilde{X} = \Gamma_f \).

Remark: This recovers \(\tilde{\mathbb{A}}^n \) for \(f_i(x) = x_i \), \(X = \mathbb{A}^n \), \(Y = \{0\} \).

BEWARE!!! Equality may not hold above.
Lemma

The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.
Lemma

The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.
Lemma

The blowup \(\tilde{X} \) only depends on the ideal \(I = \langle f_1, \ldots, f_r \rangle \).

We can speak about the blowup of \(X \) at the ideal \(I \).

Proof: Let \(f_1', \ldots, f_s' \) be different generators
Lemma

The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.

Proof: Let f'_1, \ldots, f'_s be different generators

$$f_i = \sum g_{ij} f'_j, \quad f'_j = \sum h_{jk} f_k$$
Lemma
The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.
We can speak about the blowup of X at the ideal I.

Proof: Let f'_1, \ldots, f'_s be different generators

$$f_i = \sum g_{ij} f'_j, \quad f'_j = \sum h_{jk} f_k \implies f_i = \sum g_{ij} h_{jk} f_k.$$
Lemma
The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.

Proof: Let f'_1, \ldots, f'_s be different generators

$$f_i = \sum g_{ij} f'_j, \quad f'_j = \sum h_{jk} f_k \quad \Longrightarrow \quad f_i = \sum g_{ij} h_{jk} f_k.$$

Two blowups

$$\tilde{X} \subset X \times \mathbb{P}^{r-1}, \quad \tilde{X}' \subset X \times \mathbb{P}^{s-1}.$$
Lemma

The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.

Proof: Let $f^\prime_1, \ldots, f^\prime_s$ be different generators

$$f_i = \sum g_{ij} f^\prime_j, \quad f^\prime_j = \sum h_{jk} f_k \implies f_i = \sum g_{ij} h_{jk} f_k.$$

Two blowups

$\tilde{X} \subset X \times \mathbb{P}^{r-1}, \tilde{X}' \subset X \times \mathbb{P}^{s-1}$.

$$F : \tilde{X} \to \tilde{X}', \quad F(x, y) = \left(x, \left[\sum h_{1k}(x)y_k : \ldots : \sum h_{sk}(x)y_k \right] \right)$$
Lemma
The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.

Proof: Let f'_1, \ldots, f'_s be different generators

$$f_i = \sum g_{ij}f'_j, \quad f'_j = \sum h_{jk}f_k \implies f_i = \sum g_{ij}h_{jk}f_k.$$

Two blowups

$$\tilde{X} \subset X \times \mathbb{P}^{r-1}, \tilde{X}' \subset X \times \mathbb{P}^{s-1}.$$

$$F : \tilde{X} \to \tilde{X}', \quad F(x, y) = \left(x, \left[\sum h_{1k}(x)y_k : \ldots : \sum h_{sk}(x)y_k\right]\right)$$

$$\tilde{F} : \tilde{X}' \to \tilde{X}, \quad \tilde{F}(x, y') = \left(x, \left[\sum g_{1j}(x)y'_j : \ldots : \sum g_{rj}(x)y'_j\right]\right).$$
Lemma
The blowup \tilde{X} only depends on the ideal $I = \langle f_1, \ldots, f_r \rangle$.

We can speak about the blowup of X at the ideal I.

Proof: Let f'_1, \ldots, f'_s be different generators

$$f_i = \sum g_{ij} f'_j, \quad f'_j = \sum h_{jk} f_k \implies f_i = \sum g_{ij} h_{jk} f_k.$$

Two blowups

$$\tilde{X} \subset X \times \mathbb{P}^{r-1}, \tilde{X}' \subset X \times \mathbb{P}^{s-1}.$$

$$F : \tilde{X} \to \tilde{X}', \quad F(x, y) = \left(x, \left[\sum h_{1k}(x) y_k : \ldots : \sum h_{sk}(x) y_k \right] \right)$$

$$\tilde{F} : \tilde{X}' \to \tilde{X}, \quad \tilde{F}(x, y') = \left(x, \left[\sum g_{1j}(x) y'_j : \ldots : \sum g_{rj}(x) y'_j \right] \right)$$
Check: F well-defined
Check: F well-defined

Check:

$$F(U) \subset \tilde{X}'$$
Check: \(F \) well-defined

Check:

\[
F(U) \subset \tilde{X}'
\]

\[
(x, y) \in U \cong \Gamma_f \implies y = f(x)
\]
Check: F well-defined

Check:

$$F(U) \subset \tilde{X}'$$

$$(x, y) \in U \cong \Gamma_f \implies y = f(x)$$

$$\implies F(x, y) = \left(x, \left[\sum h_{1k}(x)y_k : \ldots : \sum h_{sk}(x)y_k \right] \right)$$
Check: F well-defined

Check:

$$F(U) \subset \tilde{X}'$$

$$(x, y) \in U \cong \Gamma_f \implies y = f(x)$$

$$\implies F(x, y) = \left(x, \left[\sum h_{1k}(x)y_k : \ldots : \sum h_{sk}(x)y_k \right] \right)$$

$$= \left(x, \left[\sum h_{1k}(x)f_k(x) : \ldots : \sum h_{sk}(x)f_k(x) \right] \right)$$
Check: F well-defined

Check:

$$F(U) \subset \tilde{X}$$

$$(x, y) \in U \simeq \Gamma_f \implies y = f(x)$$

$$\implies F(x, y) = \left(x, \left[\sum h_{1k}(x)y_k : \ldots : \sum h_{sk}(x)y_k \right] \right)$$

$$= \left(x, \left[\sum h_{1k}(x)f_k(x) : \ldots : \sum h_{sk}(x)f_k(x) \right] \right)$$

$$= (x, [f'_1(x), \ldots, f'_s(x)]) \in \Gamma_{f'} \subset \tilde{X}'.$$
\[F(\tilde{X}) \subset \tilde{X}' \] by taking closure.
\[F(\tilde{X}) \subset \tilde{X}' \] by taking closure.

\[F \circ \tilde{F} = 1 \] on \(\Gamma_f \) hence on \(\tilde{X} \).
$F(\tilde{X}) \subset \tilde{X}'$ by taking closure.

$F \circ \tilde{F} = 1$ on Γ_f hence on \tilde{X}.

$$F \circ \tilde{F}(x, f(x)) = (x, \sum g_{ij} h_{jk} f_k(x)) = (x, f(x))$$

using

$$f_i = \sum g_{ij} h_{jk} f_k$$
\[F(\tilde{X}) \subset \tilde{X}' \] by taking closure.

\[F \circ \tilde{F} = 1 \] on \(\Gamma_f \) hence on \(\tilde{X} \).

\[F \circ \tilde{F}(x, f(x)) = (x, \sum g_{ij} h_{jk} f_k(x)) = (x, f(x)) \]

using

\[f_i = \sum g_{ij} h_{jk} f_k \]

\(F, \tilde{F} \) are isomorphisms so

\[\tilde{X} \simeq \tilde{X}' \]
\[F(\tilde{X}) \subset \tilde{X}' \text{ by taking closure.} \]

\[F \circ \tilde{F} = 1 \text{ on } \Gamma_f \text{ hence on } \tilde{X}. \]

\[F \circ \tilde{F}(x, f(x)) = (x, \sum g_{ij} h_{jk} f_k(x)) = (x, f(x)) \]

using

\[f_i = \sum g_{ij} h_{jk} f_k \]

\[F, \tilde{F} \text{ are isomorphisms so} \]

\[\tilde{X} \simeq \tilde{X}' \]
Several methods:

- X variety, $Y \subset X$ closed, $X = \bigcup U_i$.

Construct \tilde{X}: blowup U_i at $Y \cap U_i$ and glue.
General construction

Several methods:

- X variety, $Y \subset X$ closed, $X = \bigcup U_i$.

 Construct \tilde{X}: blowup U_i at $Y \cap U_i$ and glue.
General construction

Several methods:

- X variety, $Y \subset X$ closed, $X = \bigcup U_i$.

 Construct \tilde{X}: blowup U_i at $Y \cap U_i$ and glue.

- X variety, $p \in X$,

 $$\tilde{X} = \text{Bl}_p U \cup (X \setminus \{p\}), \ p \in U \text{ affine}$$
General construction

Several methods:

- \(X\) variety, \(Y \subset X\) closed, \(X = \bigcup U_i\).

 Construct \(\tilde{X}\): blowup \(U_i\) at \(Y \cap U_i\) and glue.

- \(X\) variety, \(p \in X\),

 \[\tilde{X} = \text{Bl}_p U \cup (X \setminus \{p\}),\ p \in U \text{ affine}\]

- \(X\) projective – via graphs as in affine case.
General construction

Several methods:

- \mathbf{X} variety, $\mathbf{Y} \subseteq \mathbf{X}$ closed, $\mathbf{X} = \bigcup U_i$.

 Construct $\tilde{\mathbf{X}}$: blowup U_i at $\mathbf{Y} \cap U_i$ and glue.

- \mathbf{X} variety, $p \in \mathbf{X}$,

 $\tilde{\mathbf{X}} = \text{Bl}_p U \cup (\mathbf{X} \setminus \{p\})$, $p \in U$ affine

- \mathbf{X} projective – via graphs as in affine case.
Example: del Pezzo surfaces

Blowups of \mathbb{P}^2 at $n \leq 8$ general points.
Example: del Pezzo surfaces

Blowups of \mathbb{P}^2 at $n \leq 8$ general points.

Exercise: Blowup of \mathbb{P}^2 at 1 point \simeq blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ at 2 points.
Example: del Pezzo surfaces

Blowups of \mathbb{P}^2 at $n \leq 8$ general points.

Exercise: Blowup of \mathbb{P}^2 at 1 point \simeq blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ at 2 points.

Figure: Pasquale del Pezzo
Example: Cremona transformation

\[f : \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \quad [x_0, x_1, x_2] \mapsto [x_1 x_2 : x_0 x_2 : x_0 x_1] \]
Example: Cremona transformation

\[f : \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \ [x_0, x_1, x_2] \mapsto [x_1 x_2 : x_0 x_2 : x_0 x_1] \]

- Undefined at \(p_0 = [1 : 0 : 0] \), \(p_1 = [0 : 1 : 0] \), \(p_2 = [0 : 0 : 1] \).
Example: Cremona transformation

\[f : \mathbb{P}^2 \rightarrow \mathbb{P}^2, \quad [x_0, x_1, x_2] \mapsto [x_1x_2 : x_0x_2 : x_0x_1] \]

- **Undefined** at \(p_0 = [1 : 0 : 0] \), \(p_1 = [0 : 1 : 0] \), \(p_2 = [0 : 0 : 1] \).

Ideal

\((y_1y_2, y_0y_2, y_0y_1)\).

- \(\widetilde{\mathbb{P}}^2 \subset \mathbb{P}^2 \times \mathbb{P}^2 \), \(x_0y_0 = x_1y_1 = x_2y_2 \)
Example: Cremona transformation

\[f : \mathbb{P}^2 \rightarrow \mathbb{P}^2, \quad [x_0, x_1, x_2] \mapsto [x_1x_2 : x_0x_2 : x_0x_1] \]

- **Undefined at** \(p_0 = [1 : 0 : 0] \), \(p_1 = [0 : 1 : 0] \), \(p_2 = [0 : 0 : 1] \).

Ideal

\((y_1y_2, y_0y_2, y_0y_1)\).

- \(\widetilde{\mathbb{P}}^2 \subset \mathbb{P}^2 \times \mathbb{P}^2 \), \(x_0y_0 = x_1y_1 = x_2y_2 \)

Homework: Resolve

\[\tilde{f} : \widetilde{\mathbb{P}}^2 \rightarrow \widetilde{\mathbb{P}}^2 \]
Example: Cremona transformation

\[f : \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \quad [x_0, x_1, x_2] \mapsto [x_1 x_2 : x_0 x_2 : x_0 x_1] \]

- **Undefined** at \(p_0 = [1 : 0 : 0] \), \(p_1 = [0 : 1 : 0] \), \(p_2 = [0 : 0 : 1] \).

Ideal

\((y_1 y_2, y_0 y_2, y_0 y_1)\).

- \(\widetilde{\mathbb{P}}^2 \subseteq \mathbb{P}^2 \times \mathbb{P}^2 \), \(x_0 y_0 = x_1 y_1 = x_2 y_2 \)

- **Homework:** Resolve

\[\tilde{f} : \widetilde{\mathbb{P}}^2 \rightarrow \widetilde{\mathbb{P}}^2 \]

\([x_0 : x_1 : x_2], [y_0 : y_1 : y_2] \mapsto [y_0 : y_1 : y_2], [x_0 : x_1 : x_2] \)
Example: Cremona transformation

\[f : \mathbb{P}^2 \rightarrow \mathbb{P}^2, \quad [x_0, x_1, x_2] \mapsto [x_1x_2 : x_0x_2 : x_0x_1] \]

- Undefined at \(p_0 = [1 : 0 : 0], \ p_1 = [0 : 1 : 0], \ p_2 = [0 : 0 : 1] \).

 Ideal

 \((y_1y_2, y_0y_2, y_0y_1)\).

- \(\widetilde{P}^2 \subset \mathbb{P}^2 \times \mathbb{P}^2, \ x_0y_0 = x_1y_1 = x_2y_2 \)

- Homework: Resolve

 \(\tilde{f} : \widetilde{P}^2 \rightarrow \widetilde{P}^2 \)

 \([x_0 : x_1 : x_2], [y_0 : y_1 : y_2] \mapsto [y_0 : y_1 : y_2], [x_0 : x_1 : x_2] \)