Last time

There is a 1−1 correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $R = k[x_1, \ldots, x_n]$.

- ideals $i \subset R$ give $Z(i) \subset \mathbb{A}^n$
Last time

There is a $1-1$ correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $R = k[x_1, ..., x_n]$.

- ideals $i \subset R$ give $Z(i) \subset \mathbb{A}^n$
- algebraic sets $X \subset \mathbb{A}^n$ give $I(X) \subset R$
Last time

There is a 1−1 correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $R = k[x_1, \ldots, x_n]$.

- ideals $i \subset R$ give $Z(i) \subset \mathbb{A}^n$
- algebraic sets $X \subset \mathbb{A}^n$ give $I(X) \subset R$
- $ZI(X) = X$
Last time

There is a 1 − 1 correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $R = k[x_1, \ldots, x_n]$.

- ideals $i \subset R$ give $Z(i) \subset \mathbb{A}^n$
- algebraic sets $X \subset \mathbb{A}^n$ give $I(X) \subset R$
- $ZI(X) = X$

Theorem (Strong Nullstellensatz)

$$IZ(i) = \sqrt{i}$$
Last time

There is a 1 − 1 correspondence between algebraic sets in \(\mathbb{A}^n \) and radical ideals in \(R = k[x_1, ..., x_n] \).

- ideals \(i \subset R \) give \(Z(i) \subset \mathbb{A}^n \)
- algebraic sets \(X \subset \mathbb{A}^n \) give \(I(X) \subset R \)
- \(ZI(X) = X \)

Theorem (Strong Nullstellensatz)

\[
IZ(i) = \sqrt{i}
\]

Proof uses the weak Nullstellensatz

\[
Z(a) = \emptyset \iff a = (1).
\]
Last time

There is a 1 − 1 correspondence between algebraic sets in \mathbb{A}^n and radical ideals in $R = k[x_1, ..., x_n]$.

- ideals $i \subset R$ give $Z(i) \subset \mathbb{A}^n$
- algebraic sets $X \subset \mathbb{A}^n$ give $I(X) \subset R$
- $Z(I(X)) = X$

Theorem (Strong Nullstellensatz)

$I Z(i) = \sqrt{i}$

Proof uses the weak Nullstellensatz

$Z(\alpha) = \emptyset \iff \alpha = (1)$.
Figure: David Hilbert
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.
- Let $f \in IZ(i)$. We show $f^n \in i$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.
- Let $f \in I_Z(i)$. We show $f^n \in i$.
- Let $j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]$.

Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

\[p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0 \]

contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq IZ(i)$.
- Let $f \in IZ(i)$. We show $f^n \in i$.
- Let $j = i + (tf - 1) \subseteq k[x_1, \ldots, x_n, t]$.

Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

$$p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0$$

contradiction.

Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.
- Let $f \in IZ(i)$. We show $f^n \in i$.
- Let $j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]$.

Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then $p \in Z(i)$, $tf(p) - 1 = 0 \implies f(p) \neq 0$ contradiction.

- Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.

- Let t^N the highest power of t occurring in the g_i.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq IZ(i)$.
- Let $f \in IZ(i)$. We show $f^n \in i$.
- Let
 \[j = i + (tf - 1) \subseteq k[x_1, \ldots, x_n, t]. \]

Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

\[p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0 \]

contradiction.
- Hence $j = (1)$:

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with $f_i \in i$.
- Let t^N the highest power of t occurring in the g_i.
Proof

\[f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, ft). \]
Proof

\[f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots \]
\[+ f_m \cdot G_m(x_1, \ldots, x_n, ft). \]

In \(k[x_1, \ldots, x_n, t]/(ft - 1) \) we have

\[f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1). \]
Proof

\[f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, ft). \]

In \(k[x_1, \ldots, x_n, t]/(ft - 1) \) we have

\[f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1). \]

Regard this as identity in
\(k[x_1, \ldots, x_n] \subset k[x_1, \ldots, x_n, t]/(ft - 1) \) and note that

\[f^N \in i \]

since \(f_i \in i \).
Proof

\[f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, ft). \]

In \(k[x_1, \ldots, x_n, t]/(ft - 1) \) we have

\[f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1). \]

Regard this as identity in \(k[x_1, \ldots, x_n] \subset k[x_1, \ldots, x_n, t]/(ft - 1) \) and note that \(f^N \in i \) since \(f_i \in i \).
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: Let $X = Z(xy) \subset \mathbb{A}^2$ be the union of the two coordinate axes.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: Let $X = Z(xy) \subset \mathbb{A}^2$ be the union of the two coordinate axes.

Clearly

$$X = X_1 \cup X_2$$

where $X_1 = Z(y), X_2 = Z(x)$.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: Let $X = Z(xy) \subset \mathbb{A}^2$ be the union of the two coordinate axes.

Clearly

$$X = X_1 \cup X_2$$

where $X_1 = Z(y)$, $X_2 = Z(x)$.

The set X is said to be reducible, and X_1 and X_2 are its irreducible components.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: Let \(X = Z(xy) \subset \mathbb{A}^2 \) be the union of the two coordinate axes.

Clearly

\[X = X_1 \cup X_2 \]

where \(X_1 = Z(y), X_2 = Z(x) \).

The set \(X \) is said to be reducible, and \(X_1 \) and \(X_2 \) are its irreducible components.

Definition

A topological space \(X \) is reducible if \(X = X_1 \cup X_2 \) for two proper closed subsets \(X_1 \) and \(X_2 \).
Irreducibility

Remark: If \(X_1 \) and \(X_2 \) are required disjoint, \(X \) is said to be disconnected. A disconnected set it reducible.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected. A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected. A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. To see this, set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \ X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

Both these sets are closed in the usual topology. However, \mathbb{A}^1 is connected.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected. A disconnected set is reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. To see this, set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \quad X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

Both these sets are closed in the usual topology. However, \mathbb{A}^1 is connected.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
Irreducibility

Lemma
Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.
Irreducibility

Lemma
Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.

Definition
An irreducible affine algebraic set is called an affine variety.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals. How about affine varieties?
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals. How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals. How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We will prove that X is reducible if and only if $I(X)$ is not prime.
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals. How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We will prove that X is reducible if and only if $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.
Prime ideals

Affine algebraic sets are in 1 – 1 correspondence with radical ideals. How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We will prove that X is reducible if and only if $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since f vanishes on X_1 and g vanishes on X_2, the product fg vanishes on $X_1 \cup X_2 = X$.
Prime ideals

Affine algebraic sets are in $1 – 1$ correspondence with radical ideals. How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We will prove that X is reducible if and only if $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since f vanishes on X_1 and g vanishes on X_2, the product fg vanishes on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \not\in I(X)$, showing that $I(X)$ is not prime.
Affine algebraic sets are in 1−1 correspondence with radical ideals. How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We will prove that X is reducible if and only if $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since f vanishes on X_1 and g vanishes on X_2, the product fg vanishes on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \not\in I(X)$, showing that $I(X)$ is not prime.
Example The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.
Example The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

\[y \cdot (x^2 - y) \in \mathfrak{a} \]

but $y \notin \mathfrak{a}$ and $x^2 - y \notin \mathfrak{a}$. We have

\[Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2). \]
Example The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \notin \mathfrak{a}$ and $x^2 - y \notin \mathfrak{a}$. We have

$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$

Example The only proper irreducible subsets of \mathbb{A}^1 are single points.
Example The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \not\in \mathfrak{a}$ and $x^2 - y \not\in \mathfrak{a}$. We have

$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$

Example The only proper irreducible subsets of \mathbb{A}^1 are single points.

Example What are the irreducible subsets of \mathbb{A}^2? What are the prime ideals of $k[X, Y]$?
Example The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \notin \mathfrak{a}$ and $x^2 - y \notin \mathfrak{a}$. We have

$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$

Example The only proper irreducible subsets of \mathbb{A}^1 are single points.

Example What are the irreducible subsets of \mathbb{A}^2? What are the prime ideals of $k[X, Y]$?
Let \(p \subset k[X, Y] \) be prime, \(p \neq (0), (1) \).
Let $\mathfrak{p} \subset k[X, Y]$ be prime, $\mathfrak{p} \neq (0), (1)$.

We claim

- \mathfrak{p} is principal generated by one irreducible polynomial f
- \mathfrak{p} is maximal, $\mathfrak{p} = (X - a, Y - b)$ for some $a, b \in k$.

Geometrically, this means that the affine proper subvarieties of \mathbb{A}^2 are points and irreducible affine curves.
Let $\mathfrak{p} \subset k[X, Y]$ be prime, $\mathfrak{p} \neq (0), (1)$.

We claim

- \mathfrak{p} is principal generated by one irreducible polynomial f or
- \mathfrak{p} is maximal, $\mathfrak{p} = (X - a, Y - b)$ for some $a, b \in k$.

Geometrically, this means that the affine proper subvarieties of \mathbb{A}^2 are points and irreducible affine curves.
Let \(p \subset k[X, Y] \) be prime, \(p \neq (0), (1) \).

We claim

- \(p \) is principal generated by one irreducible polynomial \(f \) or
- \(p \) is maximal, \(p = (X - a, Y - b) \) for some \(a, b \in k \).

Geometrically, this means that the affine proper subvarieties of \(\mathbb{A}^2 \) are points and irreducible affine curves.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irreducible factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.
Pick $F \in p$. Factorize F into product of irreducibles. Thus p contains one irreducible polynomial f.

If $p \neq (f)$, pick an element $G \in p \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in p$.

Now,

$$(f, g) \subset p \implies Z(p) \subset Z(f, g).$$
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.
Pick $F \in p$. Factorize F into product of irreducibles. Thus p contains one irreducible polynomial f.

If $p \neq (f)$, pick an element $G \in p \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in p$.

Now,

$$(f, g) \subset p \implies Z(p) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.

Therefore $Z(f, g)$ is a finite set of points. Since $Z(p)$ is irreducible, $Z(p)$ is a point (a, b) . Thus $p = (X - a, Y - b)$.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.

Therefore $Z(f, g)$ is a finite set of points. Since $Z(\mathfrak{p})$ is irreducible, $Z(\mathfrak{p})$ is a point (a, b). Thus $\mathfrak{p} = (X - a, Y - b)$.
Lemma

If $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map and X is irreducible in \mathbb{A}^n, then $f(X)$ is also irreducible.
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

\(\quad \Rightarrow \quad \)

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with

\[Z_i = Y_i \cap f(X) \]
Lemma
If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:
- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
- \[
 X_i = f^{-1}(Y_i) \cap X
 \]
 is closed in \(X \).
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
- \[
 X_i = f^{-1}(Y_i) \cap X
 \]
 is closed in \(X \).
- \[
 X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X.
 \]
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).

 \[
 X_i = f^{-1}(Y_i) \cap X
 \]
 is closed in \(X \).

- \[
 X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X.
 \]

 This means

 \[
 X \subset f^{-1}(Y_i) \implies f(X) \subset Y_i \implies Z_i = X.
 \]
Lemma
If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:
- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[Z_i = Y_i \cap f(X) \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
- \[X_i = f^{-1}(Y_i) \cap X \]
 is closed in \(X \).
- \[X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X. \]
 This means
 \[X \subset f^{-1}(Y_i) \implies f(X) \subset Y_i \implies Z_i = X. \]
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X ⊃ X_1 ⊃ X_2 ⊃ \ldots$$

is stationary

Remark.
- Since $k[x_1, \ldots, x_n]$ is a Noetherian ring, then A^n is a Noetherian topological space.
- Any subset of Noetherian space is Noetherian. Affine algebraic sets are Noetherian.
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \ldots$$

is stationary

Remark.
- Since $k[x_1, \ldots, x_n]$ is a Noetherian ring, then \mathbb{A}^n is a Noetherian topological space.
- Any subset of Noetherian space is Noetherian. Affine algebraic sets are Noetherian.
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \ldots$$

is stationary

Remark.
- Since $k[x_1, \ldots, x_n]$ is a Noetherian ring, then \mathbb{A}^n is a Noetherian topological space.
- Any subset of Noetherian space is Noetherian. Affine algebraic sets are Noetherian.
Figure: Emmy Noether
Irreducible components

Theorem
Let X be a Noetherian topological space. Then X can be written as union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$. The decomposition is unique up to reordering of the X_i’s.
Irreducible components

Theorem

Let X be a Noetherian topological space. Then X can be written as union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$. The decomposition is unique up to reordering of the X_i's.

Remark

Algebraically, any radical ideal \mathfrak{a} is intersection of prime ideals

$$\mathfrak{a} = \bigcap_{i} \mathfrak{p}_i.$$

Analogy: any square-free integer is product of distinct primes.
Irreducible components

Theorem

Let X be a Noetherian topological space. Then X can be written as union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$. The decomposition is unique up to reordering of the X_i's.

Remark

Algebraically, any radical ideal \mathfrak{a} is intersection of prime ideals

$$\mathfrak{a} = \bigcap_{i} \mathfrak{p}_i.$$

Analogy: any square-free integer is product of distinct primes.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.

Uniqueness.

$X = \bigcup_i X_i = \bigcup_j Y_j$.

- $X_i = \bigcup_i (Y_j \cap X_i) \Rightarrow X_i \subset Y_j$ for some j.

- Similarly, $Y_j \subset X'_i$.

Thus $i = i'$ and $X_i = Y_j$. The sets X_i's are a permutation of the Y_j's.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X_1'$.
- The Theorem must be false for one of these subsets, say X_1.

Continuing this construction, one arrives at an infinite chain $X \supsetneq X_1 \supsetneq X_2 \supsetneq \ldots \supsetneq X_n \supsetneq \ldots$ of closed subsets, contradicting X is Noetherian.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.

...Continuing this construction, one arrives at an infinite chain $X \supseteq X_1 \supseteq X_2 \ldots \supseteq X_n \supseteq \ldots$ of closed subsets, contradicting X is Noetherian.

Uniqueness. $X = \bigcup_i X_i = \bigcup_j Y_j$.

- $X_i = \bigcup_i (Y_j \cap X_i) = X_i \subset Y_j$ for some j.
- Similarly, $Y_j \subset X'_i$.

Thus $i = i'$ and $X_i = Y_j$. The sets X_i's are a permutation of the Y_j's.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X_1'$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is reducible $X_1 = X_2 \cup X_2'$.
- Continuing this construction, one arrives at an infinite chain

$$X \supseteq X_1 \supseteq X_2 \ldots \supseteq X_n \supseteq \ldots$$

of closed subsets, contradicting X is Noetherian.

Uniqueness. $X = \bigcup_i X_i = \bigcup_j Y_j$.

- $X_i = \bigcup_i (Y_j \cap X_i) = X_j$ for some j.
- Similarly, $Y_j \subset X_i$.

Thus $i = i'$ and $X_i = Y_j$. The sets X_i's are a permutation of the Y_j's.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.
- Continuing this construction, one arrives at an infinite chain

 \[X \supsetneq X_1 \supsetneq X_2 \ldots \supsetneq X_n \supsetneq \ldots \]

 of closed subsets, contradicting X is Noetherian.

Uniqueness.

\[X = \bigcup X_i = \bigcup Y_j. \]

\[X_i = \bigcup (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]
Existence. Argue by contradiction assuming that \(X \) cannot be written as union of irreducible components.

- In particular, \(X \) is **reducible** \(X = X_1 \cup X'_1 \).
- The Theorem must be false for one of these subsets, say \(X_1 \).
- Repeat: \(X_1 \) is **reducible** \(X_1 = X_2 \cup X'_2 \).
- Continuing this construction, one arrives at an infinite chain

\[
X \supsetneq X_1 \supsetneq X_2 \ldots \supsetneq X_n \supsetneq \ldots
\]

of closed subsets, contradicting \(X \) is Noetherian.

Uniqueness.

\[
X = \bigcup_i X_i = \bigcup_j Y_j.
\]

- \(X_i = \bigcup_{i} (Y_j \cap X_i) \implies X_i \subseteq Y_j \) for some \(j \).
- Similarly, \(Y_j \subseteq X'_i \).
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.
- Continuing this construction, one arrives at an infinite chain

$$X \supsetneq X_1 \supsetneq X_2 \ldots \supsetneq X_n \supsetneq \ldots$$

of closed subsets, contradicting X is Noetherian.

Uniqueness.

$$X = \bigcup X_i = \bigcup Y_j.$$

- $$X_i = \bigcup (Y_j \cap X_i) \implies X_i \subset Y_j$$ for some j.
- Similarly, $Y_j \subset X'_i$. Thus $i = i'$ and $X_i = Y_j$. The sets X_i's are a permutation of the Y_j's.
Existence. Argue by contradiction assuming that X cannot be written as union of irreducible components.

- In particular, X is **reducible** $X = X_1 \cup X_1'$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is **reducible** $X_1 = X_2 \cup X_2'$.
- Continuing this construction, one arrives at an **infinite chain**

$$X \supseteq X_1 \supseteq X_2 \ldots \supseteq X_n \supseteq \ldots$$

of closed subsets, contradicting X is Noetherian.

Uniqueness.

$$X = \bigcup_i X_i = \bigcup_j Y_j.$$

- Similarly, $Y_j \subset X_1'$. Thus $i = i'$ and $X_i = Y_j$. The sets X_i's are a permutation of the Y_js.
Dimension

“Everyone knows what a curve is, until he has studied enough mathematics to become confused ...”
Dimension

“Everyone knows what a curve is, until he has studied enough mathematics to become confused ...”

Definition
An irreducible Noetherian topological space X has dimension n if there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

and any other chain has length at most or equal to n.
Dimension

“Everyone knows what a curve is, until he has studied enough mathematics to become confused ...”

Definition
An irreducible Noetherian topological space X has dimension n if there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

and any other chain has length at most or equal to n.

In this definition, we should think of the X_i’s as having dimension i.
"Everyone knows what a curve is, until he has studied enough mathematics to become confused ...

Definition
An irreducible Noetherian topological space X has dimension n if there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

and any other chain has length at most or equal to n.

In this definition, we should think of the X_i's as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible,

$$\dim X = \sup \text{ of the dimensions of its irreducible components}.$$
“Everyone knows what a curve is, until he has studied enough mathematics to become confused ...”

Definition
An irreducible Noetherian topological space X has dimension n if there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

and any other chain has length at most or equal to n.

In this definition, we should think of the X_i’s as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible,

$$\dim X = \sup \text{ of the dimensions of its irreducible components.}$$
Figure: Wolfgang Krull
Dimension

- The definition is hard to apply in practice
Dimension

- The definition is hard to apply in practice
- Easy: \(\dim \mathbb{A}^1 = 1 \).
Dimension

- The definition is hard to apply in practice
- Easy: $\dim \mathbb{A}^1 = 1$.
- Not so hard: $\dim \mathbb{A}^2 = 2$
Dimension

- The definition is hard to apply in practice
- Easy: $\dim \mathbb{A}^1 = 1$.
- Not so hard: $\dim \mathbb{A}^2 = 2$
 - The irreducible closed subsets are points and curves $f = 0$
 - Maximal chain has length 2.
- Using

$$\mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.$$
Dimension

- The definition is hard to apply in practice

- Easy: $\dim \mathbb{A}^1 = 1$.

- Not so hard: $\dim \mathbb{A}^2 = 2$
 - The irreducible closed subsets are points and curves $f = 0$
 - Maximal chain has length 2.

- Using

 $\mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n$.

- Requires some work $\dim \mathbb{A}^n = n$
Dimension

- The definition is hard to apply in practice
- Easy: \(\dim \mathbb{A}^1 = 1 \).
- Not so hard: \(\dim \mathbb{A}^2 = 2 \)
 - The irreducible closed subsets are points and curves \(f = 0 \)
 - Maximal chain has length 2.
- Using
 \[
 \mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.
 \]
- Requires some work \(\dim \mathbb{A}^n = n \)
- Better definition later.
Dimension

- The definition is hard to apply in practice

- Easy: \(\dim A^1 = 1 \).

- Not so hard: \(\dim A^2 = 2 \)
 - The irreducible closed subsets are points and curves \(f = 0 \)
 - Maximal chain has length 2.

- Using
 \[
 A^0 \subset A^1 \subset A^2 \subset \ldots \subset A^n \implies \dim A^n \geq n.
 \]

- Requires some work \(\dim A^n = n \)

- Better definition later.

- Terminology: curve, surface, threefold, etc.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \rightarrow C$ be the polynomial map (t^2, t^4, t^5).

Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \rightarrow C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$,

 where X_1, X_2 closed irreducible.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\text{dim } C \geq 2$.

- Assume $\text{dim } C \geq 2$.

- $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supsetneq f^{-1}(X_1) \supsetneq f^{-1}(X_2) \neq \emptyset$.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- $C \supseteq X_1 \supseteq X_2 \neq \emptyset$,

 where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supseteq f^{-1}(X_1) \supseteq f^{-1}(X_2) \neq \emptyset$.

- $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \rightarrow C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supsetneq f^{-1}(X_1) \supsetneq f^{-1}(X_2) \neq \emptyset$.

- $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.

- Thus X_i is one point.
Example: Let C be given parametrically by
\[(t^2, t^4, t^5), \ t \in k. \]

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- Therefore,
 \[C \supsetneq X_1 \supsetneq X_2 \neq \emptyset, \]
 where X_1, X_2 closed irreducible.

- Thus X_i is one point.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

▶ This is false.

Let $X = \{a, b\}$. Give X the topology whose closed sets are \emptyset, $\{a\}$, X.

X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.

Remark: This is true if X is an affine algebraic set in the Zariski topology.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then
\[\dim U = \dim X. \]

- This is false.

Set $X = \{ a, b \}$. Give X the topology whose closed sets are $\emptyset, \{ a \}, X$.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.

X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.

X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.

Remark: This is true if X is an affine algebraic set in the Zariski topology.
II. Functions and morphisms of algebraic sets
Coordinate rings

- We wish to define regular functions on affine varieties.
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.

\[\mathcal{A}(X) = \mathbb{K}[x_1, \ldots, x_n]/ \mathcal{I}(X) = \text{integral domain} \]

- Any \(f \in \mathcal{A}(X) \) gives a polynomial function \(f: X \to \mathbb{K} \)
- This is independent of choices \(f_1, f_2 \in \mathcal{A}(X) \Rightarrow f_1 - f_2 \in \mathcal{I}(X) \Rightarrow f_1|_X = f_2|_X. \)
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety

\[
\text{Coordinate ring } A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}
\]

Any $f \in A(X)$ gives a polynomial function $f: X \to k$

This is independent of choices $f_1, f_2 \in A(X) \Rightarrow f_1 - f_2 \in I(X) \Rightarrow f_1|_X = f_2|_X$.
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

$$A(X) = k[x_1, \ldots, x_n]/I(X)$$
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

$$A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}$$
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring
 \[A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain} \]

- Any $f \in A(X)$ gives a polynomial function
 \[f : X \rightarrow k \]
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

$$A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}$$

- Any $f \in A(X)$ gives a polynomial function

$$f : X \rightarrow k$$

- This is independent of choices f_1, f_2
Coordinate rings

- We wish to define **regular** functions on affine varieties
 - **holomorphic** functions, **differentiable** functions etc.
- Let \(X \subset \mathbb{A}^n \) affine **variety**
- **Coordinate ring**

\[
A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}
\]

- Any \(f \in A(X) \) gives a **polynomial function**

\[
f : X \to k
\]

- This is **independent of choices** \(f_1, f_2 \)

\[
f_1 = f_2 \text{ in } A(X) \implies f_1 - f_2 \in I(X) \implies f_1|_X = f_2|_X.
\]
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring
 \[
 A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}
 \]
- Any $f \in A(X)$ gives a polynomial function
 \[
 f : X \to k
 \]
- This is independent of choices f_1, f_2
 \[
 f_1 = f_2 \text{ in } A(X) \implies f_1 - f_2 \in I(X) \implies f_1|_X = f_2|_X.
 \]
\[A(X) \] is integral domain
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- $A(\mathcal{X})$ is integral domain

- The quotient field $K(\mathcal{X})$ is called the field of rational functions on \mathcal{X}.

- Each rational function can be represented as

$$\phi = \frac{f}{g}$$
A(\mathcal{X}) is integral domain

The quotient field \(\mathbb{K}(\mathcal{X}) \) is called the field of rational functions on \(\mathcal{X} \).

Each rational function can be represented as

\[
\phi = \frac{f}{g}
\]

If \(\phi = \frac{f}{g} = \frac{f'}{g'} \) then

\[
fg' - f'g \in \mathcal{I}(\mathcal{X})
\]
- $A(X)$ is integral domain

- The quotient field $K(X)$ is called the field of **rational functions** on X.

- Each rational function can be represented as

$$
\phi = \frac{f}{g}
$$

- If $\phi = \frac{f}{g} = \frac{f'}{g'}$ then

$$
fg' - f'g \in I(X)
$$

- Rational functions are **partially defined** over open subsets
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- Each rational function can be represented as
\[
\phi = \frac{f}{g}
\]
- If $\phi = \frac{f}{g} = \frac{f'}{g'}$ then
\[
fg' - f'g \in I(X)
\]
- Rational functions are partially defined over open subsets

Example: If $X = \mathbb{A}^n$, then
\[
A(X) = k[x_1, \ldots, x_n], \quad K(X) = k(x_1, \ldots, x_n).
\]
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- Each rational function can be represented as
 \[\phi = \frac{f}{g} \]
- If $\phi = \frac{f}{g} = \frac{f'}{g'}$ then
 \[fg' - f'g \in I(X) \]
- Rational functions are partially defined over open subsets

Example: If $X = \mathbb{A}^n$, then

\[A(X) = k[x_1, \ldots, x_n], \quad K(X) = k(x_1, \ldots, x_n). \]
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

▶ Let $p \in X$. The local ring $O_{X,p} = \{ f, g : g(p) \neq 0, f, g \in A(X) \} \subset K(X)$. These are the regular functions at p.

▶ Maximal ideal $m_{X,p} = \{ f : f(p) = 0 \} \subset A(X)$

$A(X)/m_{X,p} \cong k, f \mapsto f(p)$.

▶ $O_{X,p}$ is the localization $A(X)/m_{X,p}$.
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

\[
\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).
\]
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

These are the regular functions at p.
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

These are the regular functions at p.

- Maximal ideal

$$m_{X,p} = \{ f : f(p) = 0 \} \subset A(X)$$
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

These are the regular functions at p.

- Maximal ideal

$$m_{X,p} = \{ f : f(p) = 0 \} \subset A(X)$$

$$A(X)/m_{X,p} \cong k, \quad f \mapsto f(p)$$

- $\mathcal{O}_{X,p}$ is the localization

$$A(X)_{m_{X,p}}.$$
Regular functions on open subsets

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$

Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!

Example: Let $X = \{ xw - yz = 0 \} \subset \mathbb{A}^4$ and $U = \{ yw \neq 0 \}$. The function $\phi = \begin{cases} x & \text{for } y \neq 0 \\ z & \text{for } w \neq 0 \end{cases}$ is well-defined and regular on U. It is not a global quotient of two polynomials.
Regular functions on open subsets

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$

- Beware: this is trickier than it looks!!!
Regular functions on open subsets

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$

- Beware: this is trickier than it looks!!!

- Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!!
Regular functions on open subsets

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$

- Beware: this is trickier than it looks!!!

- Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$ and $U = \{yw \neq 0\}$. The function

$$\phi = \begin{cases}
\frac{x}{y} & \text{for } y \neq 0 \\
\frac{z}{w} & \text{for } w \neq 0
\end{cases}$$

is well-defined and regular on U. It is not a global quotient of two polynomials.
Regular functions on open subsets

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$

- Beware: this is trickier than it looks!!!

- Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$ and $U = \{yw \neq 0\}$. The function

$$\phi = \begin{cases}
\frac{x}{y} & \text{for } y \neq 0 \\
\frac{z}{w} & \text{for } w \neq 0
\end{cases}$$

is well-defined and regular on U. It is not a global quotient of two polynomials.
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map. TFAE
Regularity is local

Lemma

Let \(U \subset X \subset \mathbb{A}^n \) be open. Let

\[\phi : U \rightarrow k \]

be a set theoretic map. TFAE

- \(\phi : U \rightarrow k \) is regular at the point \(P \in U \)

Remark: A well-defined function on \(U \) is regular if it can be written locally as a quotient. That is, there exists a cover \(U = \bigcup_i U_i \) with \(\phi = f_i / g_i \) over \(U_i \), \(g_i \) never vanishing on \(U_i \).
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \rightarrow k$$

be a set theoretic map. TFAE

- $\phi : U \rightarrow k$ is regular at the point $P \in U$
- there is a neighborhood V of P in U,
Regularity is local

Lemma

Let \(U \subset X \subset \mathbb{A}^n \) be open. Let

\[\phi : U \to k \]

be a set theoretic map. TFAE

- \(\phi : U \to k \) is regular at the point \(P \in U \)
- there is a neighborhood \(V \) of \(P \) in \(U \), polynomials \(f, g \) with
Regularity is local

Lemma
Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \rightarrow k$$

be a set theoretic map. TFAE

- $\phi : U \rightarrow k$ is regular at the point $P \in U$
- there is a neighborhood V of P in U, polynomials f, g with
 - $g(Q) \neq 0$
 - $\phi(Q) = \frac{f(Q)}{g(Q)}$ for all $Q \in V$.

Remark: A well-defined function on U is regular if it can be written locally as a quotient.
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a *set theoretic* map. TFAE

- $\phi : U \to k$ is *regular* at the point $P \in U$
- there is a *neighborhood* V of P in U, *polynomials* f, g with
 - $g(Q) \neq 0$
 - $\phi(Q) = \frac{f(Q)}{g(Q)}$ for all $Q \in V$.

Remark: A well-defined function on U is *regular* if it can be written locally as a quotient. That is, there exists a cover $U = \bigcup_i U_i$ with

$$\phi = \frac{f_i}{g_i} \text{ over } U_i,$$

g_i never vanishing on U_i.
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \rightarrow k$$

be a set theoretic map. TFAE

- $\phi : U \rightarrow k$ is regular at the point $P \in U$
- there is a neighborhood V of P in U, polynomials f, g with
 - $g(Q) \neq 0$
 - $\phi(Q) = \frac{f(Q)}{g(Q)}$ for all $Q \in V$.

Remark: A well-defined function on U is regular if it can be written locally as a quotient. That is, there exists a cover $U = \bigcup_i U_i$ with

$$\phi = \frac{f_i}{g_i} \text{ over } U_i,$$

g_i never vanishing on U_i.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

 $$V = \{q \in U : g(q) \neq 0\}.$$

 This is open in U and contains p.

Proof:

- **Forward:** We have \(\phi = \frac{f}{g} \) with \(g(p) \neq 0 \). Let

\[
V = \{ q \in U : g(q) \neq 0 \}.
\]

This is open in \(U \) and contains \(p \).

- **Converse:** to each \(\phi = \frac{f}{g} \) in \(V \), associate \(\frac{f}{g} \in K(X) \).
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

$$V = \{ q \in U : g(q) \neq 0 \}.$$

This is open in U and contains p.

- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.

- **Check:** this is independent of choices.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

 $$V = \left\{ q \in U : g(q) \neq 0 \right\}.$$

 This is open in U and contains p.

- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.

- **Check:** this is independent of choices.

- **Let** $\phi = \frac{f}{g}$, $\phi = \frac{f'}{g'}$ in V and V'.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let
 \[V = \{ q \in U : g(q) \neq 0 \}. \]
 This is open in U and contains p.
- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.
- **Check:** this is independent of choices.
- Let $\phi = \frac{f}{g}, \phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

 $$V = \{ q \in U : g(q) \neq 0 \}.$$

 This is open in U and contains p.

- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.

- **Check:** this is independent of choices.

- **Let** $\phi = \frac{f}{g}, \phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

 $$\frac{f}{g} = \frac{f'}{g'} \text{ on } W$$
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

 \[V = \{ q \in U : g(q) \neq 0 \}. \]

 This is open in U and contains p.

- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.

- **Check:** this is independent of choices.

- Let $\phi = \frac{f}{g}, \phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

 \[\frac{f}{g} = \frac{f'}{g'} \text{ on } W \implies fg' - f'g = 0 \text{ on } W \]
Proof:

- **Forward:** We have \(\phi = \frac{f}{g} \) with \(g(p) \neq 0 \). Let
 \[
 V = \{ q \in U : g(q) \neq 0 \}.
 \]
 This is open in \(U \) and contains \(p \).

- **Converse:** to each \(\phi = \frac{f}{g} \) in \(V \), associate \(\frac{f}{g} \in K(X) \).

- **Check:** this is independent of choices.

- Let \(\phi = \frac{f}{g}, \phi = \frac{f'}{g'} \) in \(V \) and \(V' \). Let \(W = V \cap V' \). Then
 \[
 \frac{f}{g} = \frac{f'}{g'} \quad \text{on} \quad W \quad \implies \quad fg' - f'g = 0 \quad \text{on} \quad W
 \]
 \[
 \implies \quad fg' - f'g = 0 \quad \text{on} \quad \bar{W} = X
 \]
Proof:

► **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

$$V = \{ q \in U : g(q) \neq 0 \}.$$

This is open in U and contains p.

► **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.

► **Check:** this is independent of choices.

► Let $\phi = \frac{f}{g}, \phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

$$\frac{f}{g} = \frac{f'}{g'} \text{ on } W \implies fg' - f'g = 0 \text{ on } W$$

$$\implies fg' - f'g = 0 \text{ on } \bar{W} = X$$

$$\implies fg' = f'g \text{ in } A(X)$$
Proof:

▶ Forward: We have \(\phi = \frac{f}{g} \) with \(g(p) \neq 0 \). Let

\[
V = \{ q \in U : g(q) \neq 0 \}.
\]

This is open in \(U \) and contains \(p \).

▶ Converse: to each \(\phi = \frac{f}{g} \) in \(V \), associate \(\frac{f}{g} \in K(X) \).

▶ Check: this is independent of choices.

▶ Let \(\phi = \frac{f}{g}, \phi = \frac{f'}{g'} \) in \(V \) and \(V' \). Let \(W = V \cap V' \). Then

\[
\frac{f}{g} = \frac{f'}{g'} \quad \text{on } W \implies fg' - f'g = 0 \quad \text{on } W
\]

\[
\implies fg' - f'g = 0 \quad \text{on } \bar{W} = X
\]

\[
\implies fg' = f'g \quad \text{in } A(X)
\]

\[
\implies \frac{f}{g} = \frac{f'}{g'} \quad \text{in } K(X).
\]