Math 203A – October 24, 2018

- Office hours today only: 1:45 - 2:45, also after 4:45
Office hours today only: 1:45 - 2:45, also after 4:45

Winter Quarter schedule?
Office hours today only: 1:45 - 2:45, also after 4:45
Winter Quarter schedule?
Last time

- morphisms of projective varieties
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
- $\mathbb{P}^n \times \mathbb{P}^m$ is projective
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
- $\mathbb{P}^n \times \mathbb{P}^m$ is projective
- closed subsets of $\mathbb{P}^n \times \mathbb{P}^m$ are cut out by bihomogeneous polynomials
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
- $\mathbb{P}^n \times \mathbb{P}^m$ is projective
- closed subsets of $\mathbb{P}^n \times \mathbb{P}^m$ are cut out by bihomogeneous polynomials
- X, Y projective $\implies X \times Y$ is projective
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
- \(\mathbb{P}^n \times \mathbb{P}^m \) is projective
- closed subsets of \(\mathbb{P}^n \times \mathbb{P}^m \) are cut out by bihomogeneous polynomials
- \(X, Y \) projective \(\implies X \times Y \) is projective

Loose ends:
- \(X \) projective variety \(\implies X \) is a variety
Last time

- morphisms of projective varieties
- examples: Veronese and Segre
- $\mathbb{P}^n \times \mathbb{P}^m$ is projective
- closed subsets of $\mathbb{P}^n \times \mathbb{P}^m$ are cut out by bihomogeneous polynomials
- X, Y projective $\implies X \times Y$ is projective

Loose ends:
- X projective variety $\implies X$ is a variety
Lemma

Any *irreducible* projective algebraic set is a *variety*.
Lemma

Any *irreducible* projective algebraic set is a *variety*.

Proof: Suffices to show that \mathbb{P}^n is a *variety*.
Lemma
Any *irreducible* projective algebraic set is a *variety*.

Proof: Suffices to show that \mathbb{P}^n is a *variety*. That is, we show

$$\Delta \hookrightarrow \mathbb{P}^n \times \mathbb{P}^n$$

is closed.
Lemma

Any \textit{irreducible} projective algebraic set is a \textit{variety}.

Proof: Suffices to show that \(\mathbb{P}^n \) is a \textit{variety}. That is, we show

\[
\Delta \hookrightarrow \mathbb{P}^n \times \mathbb{P}^n
\]

is \textit{closed}. Note

\[
\Delta = \{ (x, y) : [x_0 : \ldots : x_n] = [y_0 : \ldots : y_n] \} = \{ x_i y_j - x_j y_i = 0 \}
\]
Lemma
Any irreducible projective algebraic set is a variety.

Proof: Suffices to show that \mathbb{P}^n is a variety. That is, we show

$$\Delta \hookrightarrow \mathbb{P}^n \times \mathbb{P}^n$$

is closed. Note

$$\Delta = \{(x, y) : [x_0 : \ldots : x_n] = [y_0 : \ldots : y_n]\} = \{x_iy_j - x_jy_i = 0\}$$

which is given by bihomogeneous equations.
Lemma
Any irreducible projective algebraic set is a variety.

Proof: Suffices to show that \(\mathbb{P}^n \) is a variety. That is, we show

\[\Delta \hookrightarrow \mathbb{P}^n \times \mathbb{P}^n \]

is closed. Note

\[\Delta = \{(x, y) : [x_0 : \ldots : x_n] = [y_0 : \ldots : y_n]\} = \{x_iy_j - x_jy_i = 0\} \]

which is given by bihomogeneous equations.
Intermezzo: Grassmannians

- We consider a cousin of projective space: the Grassmannian
Intermezzo: Grassmannians

- We consider a cousin of projective space: the Grassmannian

- $G(1, n)$ is the set of lines in \mathbb{P}^n
Intermezzo: Grassmannians

- We consider a \textit{cousin} of projective space: the \textit{Grassmannian}

- $G(1, n)$ is the \textit{set of lines} in \mathbb{P}^n or \textit{equivalently} 2-planes through the origin in \mathbb{A}^{n+1}
Intermezzo: Grassmannians

- We consider a cousin of projective space: the Grassmannian

- $G(1, n)$ is the set of lines in \mathbb{P}^n or equivalently 2-planes through the origin in \mathbb{A}^{n+1}

Figure: Herman Grassman

Figure: Julius Plücker
Theorem

The Grassmannian \(G(1, n)\) is a projective variety of dimension \(2(n - 1)\).
Theorem

The Grassmannian $G(1, n)$ is a projective variety of dimension $2(n - 1)$.

Strategy:

- $G(1, n)$ is prevariety - affine cover
Theorem
The Grassmannian $G(1, n)$ is a projective variety of dimension $2(n - 1)$.

Strategy:

- $G(1, n)$ is prevariety - affine cover

- Projectivity:
Theorem

The Grassmannian $G(1, n)$ is a projective variety of dimension $2(n - 1)$.

Strategy:

- $G(1, n)$ is prevariety - affine cover
- Projectivity: Plücker morphism

\[\Phi : G(1, n) \hookrightarrow \mathbb{P}^N \]
Theorem

The Grassmannian $G(1, n)$ is a projective variety of dimension $2(n - 1)$.

Strategy:

- $G(1, n)$ is prevariety - affine cover
- Projectivity: Plücker morphism
 \[\Phi : G(1, n) \hookrightarrow \mathbb{P}^N \]
- The discussion applies to $G(k, n)$.
Theorem
The Grassmannian $G(1, n)$ is a projective variety of dimension $2(n - 1)$.

Strategy:

- $G(1, n)$ is prevariety - affine cover
- Projectivity: Plücker morphism
 \[\Phi : G(1, n) \hookrightarrow \mathbb{P}^N \]
- The discussion applies to $G(k, n)$. Dimension $(k + 1)(n - k)$.
Plucker morphism

Let $L = \mathbb{P}(V)$ with $V \subset \mathbb{A}^{n+1}$ be spanned by a, b with

$$a = (a_0, \ldots, a_n), \quad b = (b_0, \ldots, b_n)$$
Plucker morphism

Let \(L = \mathbb{P}(V) \) with \(V \subset \mathbb{A}^{n+1} \) be spanned by \(a, b \) with

\[
\begin{align*}
a &= (a_0, \ldots, a_n), & b &= (b_0, \ldots, b_n)
\end{align*}
\]

Define

\[
\Phi : G(1, n) \to \mathbb{P}(\wedge^2 k^{n+1}), \quad L \mapsto [a \wedge b]
\]
Plucker morphism

- Let \(L = \mathbb{P}(V) \) with \(V \subset \mathbb{A}^{n+1} \) be spanned by \(a, b \) with
\[
a = (a_0, \ldots, a_n), \quad b = (b_0, \ldots, b_n)
\]

- Define
\[
\Phi : G(1, n) \to \mathbb{P}(\wedge^2 k^{n+1}), \quad L \mapsto [a \wedge b]
\]

- In coordinates,
\[
a \wedge b = \left(\sum a_ie_i \right) \wedge \left(\sum b_je_j \right)
\]
Plucker morphism

- Let \(L = \mathbb{P}(V) \) with \(V \subset \mathbb{A}^{n+1} \) be spanned by \(a, b \) with
 \[
a = (a_0, \ldots, a_n), \quad b = (b_0, \ldots, b_n)
 \]

- Define
 \[
 \Phi : G(1, n) \to \mathbb{P}(\Lambda^2 k^{n+1}), \quad L \mapsto [a \wedge b]
 \]

- In coordinates,
 \[
a \wedge b = \left(\sum a_i e_i \right) \wedge \left(\sum b_j e_j \right) = \sum_{i<j} (a_i b_j - a_j b_i) e_i \wedge e_j
 \]
Plucker morphism

Let \(L = \mathbb{P}(V) \) with \(V \subset \mathbb{A}^{n+1} \) be spanned by \(a, b \) with
\[
a = (a_0, \ldots, a_n), \quad b = (b_0, \ldots, b_n)
\]

Define
\[
\Phi : G(1, n) \rightarrow \mathbb{P}(\wedge^2 k^{n+1}), \quad L \mapsto [a \wedge b]
\]

In coordinates,
\[
a \wedge b = \left(\sum a_i e_i \right) \wedge \left(\sum b_j e_j \right) = \sum_{i < j} (a_i b_j - a_j b_i) e_i \wedge e_j
\]

These are the 2 \times 2 minors of the matrix with rows \(a \) and \(b \)
Plucker morphism

- Let \(L = \mathbb{P}(V) \) with \(V \subset \mathbb{A}^{n+1} \) be spanned by \(a, b \) with
 \[
 a = (a_0, \ldots, a_n), \quad b = (b_0, \ldots, b_n)
 \]

- Define
 \[
 \Phi : G(1, n) \to \mathbb{P}(\wedge^2 k^{n+1}), \quad L \mapsto [a \wedge b]
 \]

- In coordinates,
 \[
 a \wedge b = \left(\sum a_i e_i \right) \wedge \left(\sum b_j e_j \right) = \sum_{i < j} (a_i b_j - a_j b_i) e_i \wedge e_j
 \]

- These are the \(2 \times 2 \) minors of the matrix with rows \(a \) and \(b \)
This is independent of choices. If a', b' is a new basis with change of matrix A.
This is independent of choices. If \(a', b' \) is a new basis with change of matrix \(A \)

\[
a \wedge b = \det A \cdot a' \wedge b'
\]
This is independent of choices. If \(a', b' \) is a new basis with change of matrix \(A \)

\[
a \wedge b = \det A \cdot a' \wedge b'
\]

Injectivity: Let

\[
V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.
\]
This is independent of choices. If \(a', b' \) is a new basis with change of matrix \(A \)

\[a \wedge b = \det A \cdot a' \wedge b' \]

Injectivity: Let

\[V = \langle a, b \rangle, \ V' = \langle a', b' \rangle. \]

\[\Phi(L) = \Phi(L') \implies \]

\[a \wedge b = a' \wedge b' \implies a, b, a', b' \text{ linearly dependent} \]

Similarly, \(a, b, b' \) dependent.

Thus \(L = L' \).
This is independent of choices. If a', b' is a new basis with change of matrix A

$$a \land b = \det A \cdot a' \land b'$$

Injectivity: Let

$$V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.$$

$$\Phi(L) = \Phi(L') \implies a \land b = a' \land b' \implies$$
This is independent of choices. If \(a', b' \) is a new basis with change of matrix \(A \)

\[
\begin{align*}
a \wedge b &= \det A \cdot a' \wedge b' \\
\end{align*}
\]

Injectivity: Let

\[
V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.
\]

\[
\Phi(L) = \Phi(L') \implies a \wedge b = a' \wedge b' \implies a \wedge b \wedge a' = 0
\]

\[
\implies
\]
This is independent of choices. If \(a', b' \) is a new basis with change of matrix \(A \)

\[
a \wedge b = \det A \cdot a' \wedge b'
\]

Injectivity: Let

\[
V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.
\]

\[
\Phi(L) = \Phi(L') \implies a \wedge b = a' \wedge b' \implies a \wedge b \wedge a' = 0
\]

\[
\implies a, b, a' \text{ linearly dependent}
\]
This is independent of choices. If a', b' is a new basis with change of matrix A

$$a \wedge b = \det A \cdot a' \wedge b'$$

Injectivity: Let

$$V = \langle a, b \rangle, V' = \langle a', b' \rangle.$$

$$\Phi(L) = \Phi(L') \implies a \wedge b = a' \wedge b' \implies a \wedge b \wedge a' = 0$$

$$\implies a, b, a' \text{ linearly dependent}$$

Similarly,

$$a, b, b' \text{ dependent.}$$
This is independent of choices. If a', b' is a new basis with change of matrix A

$$a \wedge b = \det A \cdot a' \wedge b'$$

Injectivity: Let

$$V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.$$

$$\Phi(L) = \Phi(L') \implies a \wedge b = a' \wedge b' \implies a \wedge b \wedge a' = 0$$

$$\implies a, b, a' \text{ linearly dependent}$$

Similarly,

$$a, b, b' \text{ dependent.}$$

Thus $L = L'$.
This is independent of choices. If a', b' is a new basis with change of matrix A,

$$a \wedge b = \det A \cdot a' \wedge b'$$

Injectivity: Let

$$V = \langle a, b \rangle, \ V' = \langle a', b' \rangle.$$

$$\Phi(L) = \Phi(L') \implies a \wedge b = a' \wedge b' \implies a \wedge b \wedge a' = 0$$

$$\implies a, b, a' \text{ linearly dependent}$$

Similarly,$$
a, b, b' \text{ dependent.}$$

Thus $L = L'$.
$G(1, n)$ as a prevariety

- **Claim:** cover image of Φ by affine opens $\cong \mathbb{A}^{2(n-1)}$.
$G(1, n)$ as a prevariety

- Claim: cover image of Φ by affine opens $\simeq \mathbb{A}^{2(n-1)}$.
- WLOG, the coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.

The first 2×2 minor of the matrix

\[
\begin{pmatrix}
a_0 & \ldots & a_n \\
b_0 & \ldots & b_n
\end{pmatrix}
\]

is non-zero.

The Gaussian algorithm brings this matrix into the form

\[
\begin{pmatrix}
1 & 0 & a'_2 & \ldots & a'_n \\
0 & 1 & b'_2 & \ldots & b'_n
\end{pmatrix}
\]

The affine open $L \to (a'_2, \ldots, a'_n, b'_2, \ldots, b'_n) \in \mathbb{A}^{2(n-1)}$.

The coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.

The first 2×2 minor of the matrix

\[
\begin{pmatrix}
a_0 & \ldots & a_n \\
b_0 & \ldots & b_n
\end{pmatrix}
\]

is non-zero.

The Gaussian algorithm brings this matrix into the form

\[
\begin{pmatrix}
1 & 0 & a'_2 & \ldots & a'_n \\
0 & 1 & b'_2 & \ldots & b'_n
\end{pmatrix}
\]

The affine open $L \to (a'_2, \ldots, a'_n, b'_2, \ldots, b'_n) \in \mathbb{A}^{2(n-1)}$.

The coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.

The first 2×2 minor of the matrix

\[
\begin{pmatrix}
1 & 0 & a'_2 & \ldots & a'_n \\
0 & 1 & b'_2 & \ldots & b'_n
\end{pmatrix}
\]

is non-zero.
$G(1, n)$ as a prevariety

- **Claim:** cover image of Φ by affine opens $\cong \mathbb{A}^{2(n-1)}$.
- WLOG, the coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.
- The first 2×2 minor of the matrix

\[
\begin{pmatrix}
 a_0 : \ldots : a_n \\
 b_0 : \ldots : b_n
\end{pmatrix}
\]

is non-zero.
$G(1, n)$ as a prevariety

- **Claim:** cover image of Φ by affine opens $\simeq \mathbb{A}^{2(n-1)}$.
- WLOG, the coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.
- The first 2×2 minor of the matrix

\[
\begin{pmatrix}
a_0 : \ldots : a_n \\
b_0 : \ldots : b_n
\end{pmatrix}
\]

is non-zero.

- The **Gaussian algorithm** brings this matrix into the form

\[
\begin{pmatrix}
1 & 0 & a'_2 & \ldots & a'_n \\
0 & 1 & b'_2 & \ldots & b'_n
\end{pmatrix}.
\]
$G(1, n)$ as a prevariety

- **Claim:** cover image of Φ by affine opens $\sim \mathbb{A}^{2(n-1)}$.
- WLOG, the coordinate corresponding to $e_0 \wedge e_1$ in $\Phi(L)$ is $\neq 0$.
- The first 2×2 minor of the matrix
 \[
 \begin{pmatrix}
 a_0 : \ldots : a_n \\
 b_0 : \ldots : b_n
 \end{pmatrix}
 \]
 is non-zero.
- The **Gaussian algorithm** brings this matrix into the form
 \[
 \begin{pmatrix}
 1 & 0 & a'_2 & \ldots & a'_n \\
 0 & 1 & b'_2 & \ldots & b'_n
 \end{pmatrix}.
 \]
- The affine open
 \[
 L \to (a'_2, \ldots, a'_n, b'_2, \ldots, b'_n) \in \mathbb{A}^{2(n-1)}.
 \]
G(1, n) as a prevariety

- **Claim**: cover image of Φ by affine opens \(\sim \mathbb{A}^{2(n-1)} \).
- WLOG, the coordinate corresponding to \(e_0 \wedge e_1 \) in \(\Phi(L) \) is \(\neq 0 \).
- The first \(2 \times 2 \) minor of the matrix
 \[
 \begin{pmatrix}
 a_0 : \ldots : a_n \\
 b_0 : \ldots : b_n
 \end{pmatrix}
 \]
 is non-zero.
- The **Gaussian algorithm** brings this matrix into the form
 \[
 \begin{pmatrix}
 1 & 0 & a'_2 & \ldots & a'_n \\
 0 & 1 & b'_2 & \ldots & b'_n
 \end{pmatrix}.
 \]
- The affine open
 \[
 L \to (a'_2, \ldots, a'_n, b'_2, \ldots, b'_n) \in \mathbb{A}^{2(n-1)}.
 \]
Projectivity

- We use an algebraic fact:

 \[\omega \in \Lambda^2 V \text{ splits as } \omega = a \wedge b \iff \omega \wedge \omega = 0. \]

- Let

 \[\omega = \sum \omega_{ij} e_i \wedge e_j. \]
Projectivity

- We use an algebraic fact:

\[\omega \in \Lambda^2 V \text{ splits as } \omega = a \wedge b \iff \omega \wedge \omega = 0. \]

- Let

\[\omega = \sum \omega_{ij} e_i \wedge e_j. \]

- \[
\omega \wedge \omega = \left(\sum_{i<j} \omega_{ij} e_i \wedge e_j \right) \wedge \left(\sum_{k<l} \omega_{kl} e_k \wedge e_l \right)
= \sum_{i<j<k<l} \left(\omega_{ij} \omega_{kl} - \omega_{ik} \omega_{jl} + \omega_{il} \omega_{jk} \right) e_i \wedge e_j \wedge e_k \wedge e_l
\]

- The image of \(\Phi \) is cut by the quadrics

\[
\omega_{ij} \omega_{kl} - \omega_{ik} \omega_{jl} + \omega_{il} \omega_{jk} = 0
\]

- \(G(1, n) \) is projective
Projectivity

- We use an algebraic fact:

\[\omega \in \Lambda^2 V \text{ splits as } \omega = a \wedge b \iff \omega \wedge \omega = 0. \]

- Let

\[\omega = \sum \omega_{ij} e_i \wedge e_j. \]

- The image of \(\Phi \) is cut by the quadrics

\[\omega_{ij}\omega_{kl} - \omega_{ik}\omega_{jl} + \omega_{il}\omega_{jk} = 0. \]

- \(G(1, n) \) is projective
Projectivity

- We use an algebraic fact:
 \[\omega \in \Lambda^2 V \text{ splits as } \omega = a \land b \iff \omega \land \omega = 0. \]

- Let
 \[\omega = \sum \omega_{ij} e_i \land e_j. \]

- \[
 \omega \land \omega = \left(\sum_{i<j} \omega_{ij} e_i \land e_j \right) \land \left(\sum_{k<l} \omega_{kl} e_k \land e_l \right)
 = \sum_{i<j<k<l} \left(\omega_{ij} \omega_{kl} - \omega_{ik} \omega_{jl} + \omega_{il} \omega_{jk} \right) e_i \land e_j \land e_k \land e_l
 \]

- The image of \(\Phi \) is cut by the quadrics
 \[\omega_{ij} \omega_{kl} - \omega_{ik} \omega_{jl} + \omega_{il} \omega_{jk} = 0. \]

- \(G(1, n) \) is projective
Example:

\[G(1, 3) \] is the set of lines in \(P^3 \).

\[G(1, 3) \] is the quadric in \(P^5 \):

\[\omega_{12} \omega_{34} - \omega_{13} \omega_{24} + \omega_{14} \omega_{23} = 0. \]

The line \(5x + 2y = 3z + w = 0 \) in \(P^3 \).

Let

\[a = 2e_1 - 5e_2, \]
\[b = e_3 - 3e_4. \]

Plücker coordinates

\[a \wedge b = 2e_13 - 5e_23 - 6e_14 + 15e_24. \]
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
- $G(1, 3)$ is the quadric in \mathbb{P}^5:

\[
\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0.
\]
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
- $G(1, 3)$ is the quadric in \mathbb{P}^5:

\[\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0. \]

- The line $5x + 2y = 3z + w = 0$ in \mathbb{P}^3.
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
- $G(1, 3)$ is the quadric in \mathbb{P}^5:

$$\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0.$$

- The line $5x + 2y = 3z + w = 0$ in \mathbb{P}^3. Let

$$a = 2e_1 - 5e_2, \quad b = e_3 - 3e_4.$$
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
- $G(1, 3)$ is the quadric in \mathbb{P}^5:
 \[\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0. \]
- The line $5x + 2y = 3z + w = 0$ in \mathbb{P}^3. Let
 \[a = 2e_1 - 5e_2, \quad b = e_3 - 3e_4. \]

Plücker coordinates

\[a \wedge b = 2e_{13} - 5e_{23} - 6e_{14} + 15e_{24}. \]
Example:

- $G(1, 3)$ is the set of lines in \mathbb{P}^3
- dimension 4
- $G(1, 3)$ is the quadric in \mathbb{P}^5:
 \[
 \omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0.
 \]
- The line $5x + 2y = 3z + w = 0$ in \mathbb{P}^3. Let
 \[
 a = 2e_1 - 5e_2, \quad b = e_3 - 3e_4.
 \]
 Plücker coordinates
 \[
 a \wedge b = 2e_{13} - 5e_{23} - 6e_{14} + 15e_{24}.
 \]
Main theorem of projective varieties

Theorem

Let X be projective, Y any variety, and $f : X \to Y$ a morphism.

Remark:

▶ fails for affine $f : \mathbb{A}^2 \to \mathbb{A}^1$, $X = \{xy - 1 = 0\}$, $f(X)$ not closed.

▶ analogy: projective \mapsto compact variety \mapsto Hausdorff morphism \mapsto continuous.
Main theorem of projective varieties

Theorem
Let X be projective, Y any variety, and $f : X \to Y$ a morphism. Then

$$f(X) \text{ is closed in } Y.$$
Main theorem of projective varieties

Theorem
Let X be projective, Y any variety, and $f : X \to Y$ a morphism. Then
\[f(X) \text{ is closed in } Y. \]

If X, Y are projective, then $f(X)$ is projective.
Main theorem of projective varieties

Theorem
Let \(X \) be projective, \(Y \) any variety, and \(f : X \to Y \) a morphism. Then

\[
f(X) \text{ is closed in } Y.
\]

If \(X, Y \) are projective, then \(f(X) \) is projective.

Remark:
- fails for affine
Main theorem of projective varieties

Theorem
Let X be projective, Y any variety, and $f : X \to Y$ a morphism. Then

\[f(X) \text{ is closed in } Y. \]

If X, Y are projective, then $f(X)$ is projective.

Remark:
- fails for affine
 \[f : \mathbb{A}^2 \to \mathbb{A}^1, \quad X = \{ xy - 1 = 0 \}, \quad f(X) \text{ not closed.} \]
Main theorem of projective varieties

Theorem
Let X be projective, Y any variety, and $f : X \to Y$ a morphism. Then

$$f(X) \text{ is closed in } Y.$$

If X, Y are projective, then $f(X)$ is projective.

Remark:

- fails for affine
 $$f : \mathbb{A}^2 \to \mathbb{A}^1, \ X = \{xy - 1 = 0\}, \ f(X) \text{ not closed}.$$

- analogy:
 $\text{projective} \leftrightarrow \text{compact}$
 $\text{variety} \leftrightarrow \text{Hausdorff}$
 $\text{morphism} \leftrightarrow \text{continuous}$
Main theorem of projective varieties

Theorem
Let X be projective, Y any variety, and $f : X \to Y$ a morphism. Then

$$f(X) \text{ is closed in } Y.$$

If X, Y are projective, then $f(X) \text{ is projective.}$

Remark:
▷ fails for affine

$$f : \mathbb{A}^2 \to \mathbb{A}^1, \ X = \{xy - 1 = 0\}, \ f(X) \text{ not closed.}$$

▷ analogy:

projective \mapsto compact

variety \mapsto Hausdorff

morphism \mapsto continuous
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$.

Example: The image of the Veronese morphism $v : \mathbb{P}^n \to \mathbb{P}^N$ is closed.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\bar{f} : X \to \mathbb{P}^1, \quad \bar{f} = \iota \circ f.$$
Corollary

If X is irreducible, projective and $f : X \rightarrow k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\bar{f} : X \rightarrow \mathbb{P}^1, \quad \bar{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1,

Example: The image of the Veronese morphism $v : \mathbb{P}^n \rightarrow \mathbb{P}^{N}$ is closed.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\overline{f} : X \to \mathbb{P}^1, \quad \overline{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible,
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\overline{f} : X \to \mathbb{P}^1, \quad \overline{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible, not equal to \mathbb{P}^1.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\overline{f} : X \to \mathbb{P}^1, \quad \overline{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible, not equal to \mathbb{P}^1. Then $f(X) = \text{point}$,
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \to \mathbb{P}^1$. Define

$$\overline{f} : X \to \mathbb{P}^1, \quad \overline{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible, not equal to \mathbb{P}^1. Then $f(X) =$ point, so f constant.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\overline{f} : X \to \mathbb{P}^1, \quad \overline{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible, not equal to \mathbb{P}^1.

Then $f(X) =$ point, so f constant.

Example: The image of the Veronese morphism

$$\nu : \mathbb{P}^n \to \mathbb{P}^N$$

is closed.
Corollary

If X is irreducible, projective and $f : X \to k$ is regular, then f is constant.

Proof: View $\iota : k \hookrightarrow \mathbb{P}^1$. Define

$$\bar{f} : X \to \mathbb{P}^1, \quad \bar{f} = \iota \circ f.$$

$f(X)$ is closed in \mathbb{P}^1, irreducible, not equal to \mathbb{P}^1. Then $f(X) = \text{point}$, so f constant.

Example: The image of the Veronese morphism

$$\nu : \mathbb{P}^n \to \mathbb{P}^N$$

is closed.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety.

The basic open set $X_f = \{ x \in X : f(x) \neq 0 \}$ is an abstract affine variety.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.

If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.

Affine varieties have lots of regular functions. Projective varieties only have constants.

$A(X) = A(\text{point}) = \mathbb{k} \Rightarrow X = \text{point}$.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface. If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.

Affine varieties have lots of regular functions. Projective varieties only have constants.

$A(X) = A(\text{point}) = k = \Rightarrow X = \text{point}$.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{ x \in X : f(x) \neq 0 \}$$

is an abstract affine variety.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract **affine** variety.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract affine variety.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract affine variety.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.

If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.
Basic open sets

Lemma
Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{ x \in X : f(x) \neq 0 \}$$

is an abstract affine variety.

Corollary
In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.

If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.

Affine varieties have lots of regular functions. Projective varieties only have constants.
Basic open sets

Lemma
Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{ x \in X : f(x) \neq 0 \}$$

is an abstract affine variety.

Corollary
In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.

If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.

Affine varieties have lots of regular functions. Projective varieties only have constants.

$$A(X) = A(\text{point}) = k \implies X = \text{point}.$$
Basic open sets

Lemma

Let $X \subset \mathbb{P}^n$ be projective variety. Let $f \in k[x_0, \ldots, x_n]$ be homogeneous, $f \neq 0$ on X. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract affine variety.

Corollary

In particular, unless X is a point, $X \cap Z(f) \neq \emptyset$, so X intersects any hypersurface.

If $X \cap Z(f) = \emptyset$ then $X_f = X$ would be affine.

Affine varieties have lots of regular functions. Projective varieties only have constants.

$$A(X) = A(\text{point}) = k \implies X = \text{point}.$$
Proof:

- If f is linear, we may assume $f = x_0$.
Proof:

- If f is linear, we may assume $f = x_0$. Then

 \[U = \{ x_0 \neq 0 \} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n. \]
Proof:

- If \(f \) is linear, we may assume \(f = x_0 \). Then

\[
U = \{ x_0 \neq 0 \} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n.
\]

Note

\[
X_f = U \cap X
\]

is closed in \(U \), hence affine.
Proof:

- If \(f \) is linear, we may assume \(f = x_0 \). Then

\[
U = \{x_0 \neq 0\} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n.
\]

Note

\[
X_f = U \cap X
\]

is closed in \(U \), hence affine.

- If \(\deg f = d \), let \(\nu : \mathbb{P}^n \rightarrow \mathbb{P}^N \) be the Veronese.
Proof:

- If f is linear, we may assume $f = x_0$. Then
 \[U = \{ x_0 \neq 0 \} \subset \mathbb{P}^n, \quad U \simeq \mathbb{A}^n. \]

 Note
 \[X_f = U \cap X \]
 is closed in U, hence affine.

- If $\deg f = d$, let $\nu : \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese. Write
 \[f = \sum a_I x^I \]
Proof:

- If f is linear, we may assume $f = x_0$. Then

$$U = \{x_0 \neq 0\} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n.$$

Note

$$X_f = U \cap X$$

is closed in U, hence affine.

- If $\deg f = d$, let $\nu : \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese. Write

$$f = \sum a_i x_i^l$$

and set

$$\ell = \sum a_i y_i^l.$$
Proof:

- If \(f \) is linear, we may assume \(f = x_0 \). Then

\[
U = \{x_0 \neq 0\} \subset \mathbb{P}^n, \quad U \simeq \mathbb{A}^n.
\]

Note

\[
X_f = U \cap X
\]

is closed in \(U \), hence affine.

- If \(\deg f = d \), let \(\nu : \mathbb{P}^n \to \mathbb{P}^N \) be the Veronese. Write

\[
f = \sum a_I x^I
\]

and set

\[
\ell = \sum a_I y_I.
\]

\[
\nu(X_f) = \nu(X) - \mathcal{Z}(\ell).
\]
Proof:

- If f is linear, we may assume $f = x_0$. Then

 \[U = \{ x_0 \neq 0 \} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n. \]

 Note

 \[X_f = U \cap X \]

 is closed in U, hence affine.

- If $\deg f = d$, let $\nu : \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese. Write

 \[f = \sum a_I x^I \]

 and set

 \[\ell = \sum a_I y_I. \]

 \[\nu(X_f) = \nu(X) - Z(\ell). \]

 Since $\nu(X)$ projective and ℓ linear, $\nu(X_f)$ is affine,
Proof:

- If f is linear, we may assume $f = x_0$. Then

 \[U = \{x_0 \neq 0\} \subset \mathbb{P}^n, \quad U \cong \mathbb{A}^n. \]

 Note

 \[X_f = U \cap X \]

 is closed in U, hence affine.

- If $\deg f = d$, let $\nu : \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese. Write

 \[f = \sum a_I x^I \]

 and set

 \[\ell = \sum a_I y_I. \]

 \[\nu(X_f) = \nu(X) - Z(\ell). \]

 Since $\nu(X)$ projective and ℓ linear, $\nu(X_f)$ is affine, so X_f is affine.
Strategy of proof

X projective, Y variety, $f : X \to Y$ morphism $\implies f(X)$ closed.
Strategy of proof

\[X \text{ projective, } Y \text{ variety, } f : X \rightarrow Y \text{ morphism } \implies f(X) \text{ closed.} \]

- intuitively, \(X \) projective behaves like compact set

- in AG: complete/proper varieties

- show projective varieties \(X \) are complete

- show any \(f : X \rightarrow Y \) is a closed map, for \(X \) complete
Strategy of proof

X projective, Y variety, $f : X \to Y$ morphism $\implies f(X)$ closed.

▸ intuitively, X projective behaves like compact set

▸ in AG: complete/proper varieties

▸ show projective varieties X are complete

▸ show any $f : X \to Y$ is a closed map, for X complete, so also for X projective