Math 203A
Last time

- **Strategy:** compute dimension by comparing with varieties whose dimension we already know
Last time

- **Strategy:** compute dimension by comparing with varieties whose dimension we already know

- if $f : X \to Y$ surjective, finite fibers then

 $$\dim X = \dim Y.$$
Last time

- **Strategy:** compute dimension by comparing with varieties whose dimension we already know

- if $f : X \to Y$ surjective, finite fibers then
 \[
 \dim X = \dim Y.
 \]
Projections

$\mathbb{P}^n, \quad X \subset \mathbb{P}^n, \quad X \neq \mathbb{P}^n, \quad p \in \mathbb{P}^n \setminus X, \quad p \notin H \subset \mathbb{P}^n$, hyperplane

$\pi: X \to H, \quad \pi(q) = \text{line } pq \cap H$, surjective onto its image, finite fibers

If $p = [0 : \ldots : 0 : 1]$, $H = \{x_n = 0\}$:

$\pi: \mathbb{P}^n \to \mathbb{P}^{n-1}, \quad \pi(q) = [q_0 : q_1 : \ldots : q_n - 1]$
Projections

- $X \subset \mathbb{P}^n$, $X \neq \mathbb{P}^n$
Projections

- \(X \subset \mathbb{P}^n, X \neq \mathbb{P}^n, p \in \mathbb{P}^n \setminus X, \)
Projections

- $X \subset \mathbb{P}^n$, $X \neq \mathbb{P}^n$, $p \in \mathbb{P}^n \setminus X$, $p \not\in H \subset \mathbb{P}^n$ hyperplane
Projections

- $X \subset \mathbb{P}^n$, $X \neq \mathbb{P}^n$, $p \in \mathbb{P}^n \setminus X$, $p \notin H \subset \mathbb{P}^n$ hyperplane

$\pi : X \to H$, $\pi(q) =$ line $\overline{pq} \cap H$

surjective onto its image, finite fibers
Projections

- $X \subset \mathbb{P}^n$, $X \neq \mathbb{P}^n$, $p \in \mathbb{P}^n \setminus X$, $p \not\in H \subset \mathbb{P}^n$ hyperplane

- $\pi : X \to H$, $\pi(q) =$ line $\overline{pq} \cap H$

 surjective onto its image, finite fibers

- If $p = [0 : \ldots : 0 : 1]$, $H = \{x_n = 0\}$:
Projections

- $X \subset \mathbb{P}^n$, $X \neq \mathbb{P}^n$, $p \in \mathbb{P}^n \setminus X$, $p \notin H \subset \mathbb{P}^n$ hyperplane

- $\pi : X \to H$, $\pi(q) =$ line $\overline{pq} \cap H$
 - surjective onto its image, finite fibers

- If $p = [0 : \ldots : 0 : 1]$, $H = \{x_n = 0\}$:
 - $\pi : X \to \mathbb{P}^{n-1}$, $\pi(q) = [q_0 : q_1 : \ldots : q_{n-1}]$
Projections

\[X \subset \mathbb{P}^n, \ X \neq \mathbb{P}^n, \ p \in \mathbb{P}^n \setminus X, \ p \not\in H \subset \mathbb{P}^n \text{ hyperplane} \]

\[\pi : X \rightarrow H, \ \pi(q) = \text{line } \overline{pq} \cap H \]

surjective onto its image, finite fibers

\[\text{If } p = [0 : \ldots : 0 : 1], \ H = \{x_n = 0\}: \]

\[\pi : X \rightarrow \mathbb{P}^{n-1}, \ \pi(q) = [q_0 : q_1 : \ldots : q_{n-1}] \]
Strategy:

- Prove

\[
\dim X = \dim \pi(X), \quad X \subset \mathbb{P}^n, \quad \pi(X) \subset \mathbb{P}^{n-1}
\]
Strategy:

- Prove

\[\dim X = \dim \pi(X), \quad X \subset \mathbb{P}^n, \quad \pi(X) \subset \mathbb{P}^{n-1} \]

- Continue.
Strategy:

- **Prove**

 \[\dim X = \dim \pi(X), \quad X \subset \mathbb{P}^n, \quad \pi(X) \subset \mathbb{P}^{n-1} \]

- **Continue.** Eventually, the composition of projections

 \[\pi : X \to \mathbb{P}^m \text{ surjective} \implies \dim X = \dim \mathbb{P}^m \]
Lemma

Let X be a variety of dimension n.

(i) if $Y \varsubsetneq X$ is closed,

$$\dim Y < \dim X$$
Lemma
Let X be a variety of dimension n.

(i) If $Y \subsetneq X$ is closed,

$$\dim Y < \dim X$$

(ii) If $\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$

is the longest chain, then $\dim X_i = i$
First properties

Lemma

Let X be a variety of dimension n.

(i) if $Y \subsetneq X$ is closed,

$$\dim Y < \dim X$$

(ii) If

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

is the longest chain, then $\dim X_i = i$

Proof:

(i) If $Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_m = Y$ is the longest chain in Y, then
First properties

Lemma

Let X be a variety of dimension n.

(i) if $Y \varsubsetneq X$ is closed,

$$\dim Y < \dim X$$

(ii) If

$$\emptyset \neq X_0 \varsubsetneq X_1 \varsubsetneq \ldots \varsubsetneq X_n = X$$

is the longest chain, then $\dim X_i = i$

Proof:

(i) If $Y_0 \varsubsetneq Y_1 \varsubsetneq \ldots \varsubsetneq Y_m = Y$ is the longest chain in Y, then

$$Y_0 \varsubsetneq Y_1 \varsubsetneq \ldots \varsubsetneq Y_m = Y \varsubsetneq X$$

is a chain in X,
First properties

Lemma
Let X be a variety of dimension n.

(i) if $Y \subsetneq X$ is closed,

\[\dim Y < \dim X \]

(ii) If

\[\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X \]

is the longest chain, then $\dim X_i = i$

Proof:
(i) If $Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_m = Y$ is the longest chain in Y, then

\[Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_m = Y \subsetneq X \]

is a chain in X, so

\[\dim X > \dim Y \]
First properties

Lemma

Let X be a variety of dimension n.

(i) if $Y \subsetneq X$ is closed,

$$\dim Y < \dim X$$

(ii) If

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

is the longest chain, then $\dim X_i = i$

Proof:

(i) If $Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_m = Y$ is the longest chain in Y, then

$$Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_m = Y \subsetneq X$$

is a chain in X, so

$$\dim X > \dim Y$$
(ii) By (i), \(\dim X_i \geq i \).
(ii) By (i), $\dim X_i \geq i$.

If $\dim X_i > i$,

(ii) By (i), \(\dim X_i \geq i \).

If \(\dim X_i > i \), take the longest chain in \(X_i \).
(ii) By (i), \(\dim X_i \geq i \).

If \(\dim X_i > i \), take the longest chain in \(X_i \).

Adjoin \(X_{i+1}, \ldots, X_n \) to get a chain in \(X \).
(ii) By (i), $\dim X_i \geq i$.

If $\dim X_i > i$, take the longest chain in X_i.

Adjoin X_{i+1}, \ldots, X_n to get a chain in X of length

$$\dim X_i + (n - i) > n.$$
(ii) By (i), \(\dim X_i \geq i \).

If \(\dim X_i > i \), take the longest chain in \(X_i \).

Adjoin \(X_{i+1}, \ldots, X_n \) to get a chain in \(X \) of length

\[
\dim X_i + (n - i) > n.
\]

Contradiction!
Surjective maps

Lemma
Let $f : X \to Y$ be a surjective morphism of projective varieties.
Surjective maps

Lemma
Let $f : X \rightarrow Y$ be a surjective morphism of projective varieties.

Every longest chain in Y:

$$Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_n = Y$$
Lemma

Let $f : X \to Y$ be a surjective morphism of projective varieties.

Every longest chain in Y: $Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_n = Y$

can be lifted to a chain in X: $X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$

with $f(X_i) = Y_i$.

Surjective maps

Lemma

Let \(f : X \rightarrow Y \) be a surjective morphism of projective varieties.

Every longest chain in \(Y \):

\[
Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_n = Y
\]

can be lifted to a chain in \(X \):

\[
X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X
\]

with \(f(X_i) = Y_i \). Thus

\[
\dim X \geq \dim Y.
\]
Proof:

- **Induct** on dim Y.

Proof (continued):

- **Inductive step**: $\dim Y = n - 1 = n - 1$.

- Irreducible components $Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r$.

- $Y_{n-1} = f(Z_1) \cup \ldots \cup f(Z_r)$.

- Z is closed in X, Z_j closed in Z, thus Z_j projective.

- $f(Z_j)$ is irreducible, projective, Y_{n-1} is irreducible.

- Apply induction to $f(Z_j) \rightarrow Y_{n-1}$.

- Lift Y_0, \ldots, Y_{n-1} to chain in Z_j.

- Complete it by adjoining X.

Proof:

- **Induct** on $\dim Y$.

- **Inductive step:** $\dim Y_{n-1} = n - 1$
Proof:

- **Induct** on dim Y.
- **Inductive step:** $\text{dim } Y_{n-1} = n - 1$
- **irreducible components**

$$Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r$$
Proof:

- **Induct** on \(\dim Y \).

- **Inductive step:** \(\dim Y_{n-1} = n - 1 \)

- **irreducible components**

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- \(Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r) \)
Proof:

- **Induct** on \(\dim Y \).
- **Inductive step**: \(\dim Y_{n-1} = n - 1 \)
- **Irreducible components**

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- \(Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r) \)
- \(Z \) is closed in \(X \).
Proof:

- **Induct** on $\dim Y$.
- **Inductive step**: $\dim Y_{n-1} = n - 1$
- **irreducible components**

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is closed in X, Z_j closed in Z.
Proof:

- **Induct** on dim Y.
- **Inductive step**: $\dim Y_{n-1} = n - 1$
- **irreducible components**

\[Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r \]

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is **closed** in X, Z_j **closed** in Z, thus Z_j **projective**
Proof:

- **Induct** on $\dim Y$.
- **Inductive step**: $\dim Y_{n-1} = n - 1$
- **irreducible components**

$$Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r$$

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is closed in X, Z_j closed in Z, thus Z_j projective
- $f(Z_j)$ is irreducible,
Proof:

- Induct on $\dim Y$.

- Inductive step: $\dim Y_{n-1} = n - 1$

- Irreducible components

\[Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r \]

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$

- Z is closed in X, Z_j closed in Z, thus Z_j projective

- $f(Z_j)$ is irreducible, projective,
Proof:

- Induct on \(\dim Y \).
- Inductive step: \(\dim Y_{n-1} = n - 1 \)
- Irreducible components

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- \(Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r) \)
- \(Z \) is closed in \(X \), \(Z_j \) closed in \(Z \), thus \(Z_j \) projective
- \(f(Z_j) \) is irreducible, projective, \(Y_{n-1} \) is irreducible
Proof:

- Induct on dim Y.
- Inductive step: $\dim Y_{n-1} = n - 1$
- irreducible components

\[Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r \]

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is closed in X, Z_j closed in Z, thus Z_j projective
- $f(Z_j)$ is irreducible, projective, Y_{n-1} is irreducible

\[f(Z_j) = Y_{n-1} \text{ for some } j \]
Proof:

- **Induct** on $\dim Y$.
- **Inductive step:** $\dim Y_{n-1} = n - 1$
- irreducible components

$$Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r$$

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is closed in X, Z_j closed in Z, thus Z_j projective
- $f(Z_j)$ is irreducible, projective, Y_{n-1} is irreducible

$$f(Z_j) = Y_{n-1} \text{ for some } j$$

- Apply **induction** to $f : Z_j \to Y_{n-1}$.
Proof:

- **Induct** on \(\text{dim } Y \).

- **Inductive step**: \(\text{dim } Y_{n-1} = n - 1 \)

- **irreducible components**

 \[
 Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
 \]

- \(Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r) \)

- \(Z \) is closed in \(X \), \(Z_j \) closed in \(Z \), thus \(Z_j \) projective

- \(f(Z_j) \) is irreducible, projective, \(Y_{n-1} \) is irreducible

 \[
 f(Z_j) = Y_{n-1} \text{ for some } j
 \]

- **Apply induction** to \(f : Z_j \to Y_{n-1} \).

- **Lift** \(Y_0, \ldots, Y_{n-1} \) to chain in \(Z_j \).
Proof:

- **Induct** on \(\dim Y \).
- **Inductive step:** \(\dim Y_{n-1} = n - 1 \)

irreducible components

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- \(Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r) \)
- \(Z \) is closed in \(X \), \(Z_j \) closed in \(Z \), thus \(Z_j \) projective
- \(f(Z_j) \) is irreducible, projective, \(Y_{n-1} \) is irreducible

\[
f(Z_j) = Y_{n-1} \text{ for some } j
\]

- Apply induction to \(f : Z_j \to Y_{n-1} \).
- Lift \(Y_0, \ldots, Y_{n-1} \) to chain in \(Z_j \). **Complete** it by adjoining \(X \).
Proof:

- **Induct** on $\dim Y$.
- **Inductive step**: $\dim Y_{n-1} = n - 1$
- **Irreducible components**

\[
Z = f^{-1}(Y_{n-1}) = Z_1 \cup \ldots \cup Z_r
\]

- $Y_{n-1} = f(f^{-1}(Y_{n-1})) = f(Z_1) \cup \ldots \cup f(Z_r)$
- Z is closed in X, Z_j closed in Z, thus Z_j projective
- $f(Z_j)$ is irreducible, projective, Y_{n-1} is irreducible

\[
f(Z_j) = Y_{n-1} \text{ for some } j
\]

- Apply **induction** to $f : Z_j \rightarrow Y_{n-1}$.
- **Lift** Y_0, \ldots, Y_{n-1} to chain in Z_j. **Complete** it by adjoining X.
Discussion

Let X be projective. We showed

$$\dim \pi(X) \leq \dim X.$$
Let X be projective. We showed

$$\dim \pi(X) \leq \dim X.$$

WTS: $\dim X \geq \dim \pi(X)$.

$\pi(X_i)$ are closed, irreducible.
Let X be projective. We showed

\[\dim \pi(X) \leq \dim X. \]

WTS: $\dim X \geq \dim \pi(X)$.

Issues? Pick a longest chain

\[X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X \]

giving
Discussion

Let X be projective. We showed

$$\dim \pi(X) \leq \dim X.$$

WTS: $\dim X \geq \dim \pi(X)$.

Issues? Pick a longest chain

$$X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$ giving

$$\pi(X_0) \subset \pi(X_1) \subset \ldots \subset \pi(X_n) = \pi(X).$$
Let X be projective. We showed

\[
\dim \pi(X) \leq \dim X.
\]

WTS: $\dim X \geq \dim \pi(X)$.

Issues? Pick a longest chain

\[
X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X \text{ giving}
\]

\[
\pi(X_0) \subset \pi(X_1) \subset \ldots \subset \pi(X_n) = \pi(X).
\]

$\pi(X_i)$ are closed, irreducible.
Let X be projective. We showed
\[\dim \pi(X) \leq \dim X. \]

WTS: $\dim X \geq \dim \pi(X)$.

Issues? Pick a longest chain
\[
X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X
\]
giving
\[
\pi(X_0) \subset \pi(X_1) \subset \ldots \subset \pi(X_n) = \pi(X).
\]

$\pi(X_i)$ are closed, irreducible.

If distinct, then we’re OK: $\dim X \leq \dim \pi(X)$.
Let X be projective. We showed \[\dim \pi(X) \leq \dim X. \]

WTS: $\dim X \geq \dim \pi(X)$.

Issues? Pick a longest chain

\[X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X \] giving

\[\pi(X_0) \subset \pi(X_1) \subset \ldots \subset \pi(X_n) = \pi(X). \]

$\pi(X_i)$ are closed, irreducible.

If distinct, then we’re OK: $\dim X \leq \dim \pi(X)$.

\[\]
Noether normalization

Problem: Given $Y \subset X$ closed, show $\pi(Y) \neq \pi(X)$.

Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous.

There exists $D > 0$ and $a_1, \ldots, a_D \in k[x_0, \ldots, x_n-1]$ homogeneous such that $f^D + a_1 f^{D-1} + \ldots + a_D = 0$ on X.

Noether normalization

Problem: Given $Y \subsetneq X$ closed, show $\pi(Y) \neq \pi(X)$.

Solution: Find a polynomial vanishing on $\pi(Y)$, but not on $\pi(X)$.
Noether normalization

Problem: Given $Y \subsetneq X$ closed, show $\pi(Y) \neq \pi(X)$.

Solution: Find a polynomial vanishing on $\pi(Y)$, but not on $\pi(X)$.

Proposition (Noether normalization)
Let $X \subsetneq \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$.
Noether normalization

Problem: Given $Y \subsetneq X$ closed, show $\pi(Y) \neq \pi(X)$.

Solution: Find a polynomial vanishing on $\pi(Y)$, but not on $\pi(X)$.

Proposition (Noether normalization)

Let $X \subsetneq \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous.
Noether normalization

Problem: Given $Y \subseteq X$ closed, show $\pi(Y) \neq \pi(X)$.

Solution: Find a polynomial vanishing on $\pi(Y)$, but not on $\pi(X)$.

Proposition (Noether normalization)
Let $X \subset \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$.
Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous

such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$
Expanded solution:

\[f \in I(Y) \setminus I(X) \]

\[f(D^+ a_1 f(D^- 1 + ...) + a(D^+ \pi(y)) f(D^- 1 + ...) + a(D^\pi(Y)) = 0 \] on \(X \) with \(D \) minimal.

\[f(y) D^+ a_1 (\pi(y)) f(D^- 1 + ...) + a(D^\pi(Y)) = 0 \] since \(f(y) = 0 \) for \(y \in Y \), \(a(D^\pi(Y)) = 0 \) \(\Rightarrow a(D^\pi(Y)) = 0 \) on \(\pi(Y) \).

\[f(D^+ a_1 f(D^- 1 + ...) + a(D^\pi(Y))) = 0 \] on \(X \).

\(S(X) \) is integral domain, and \(f \neq 0 \) in \(S(X) \).
Expanded solution: Pick f homogeneous, $f \in \mathcal{I}(Y) \setminus \mathcal{I}(X)$.
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take

\[f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X \]

with D minimal.
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take
 \[f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X \]
 with D minimal.

- For $y \in Y \subset X$
 \[f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0 \]
Expanded solution: Pick \(f \) homogeneous, \(f \in I(Y) \setminus I(X) \).

- Take
 \[
 f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X
 \]
 with \(D \) minimal.

- For \(y \in Y \subset X \)
 \[
 f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0
 \]

- Since \(f(y) = 0 \) for \(y \in Y \),
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take
 \[f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X \]
 with D minimal.

- For $y \in Y \subset X$
 \[f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0 \]

- Since $f(y) = 0$ for $y \in Y$,
 \[a_D(\pi(y)) = 0 \implies a_D = 0 \text{ on } \pi(Y). \]
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take
 \[f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X \]
 with D minimal.

- For $y \in Y \subset X$
 \[f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0 \]

- Since $f(y) = 0$ for $y \in Y$,
 \[a_D(\pi(y)) = 0 \implies a_D = 0 \text{ on } \pi(Y). \]

- If $a_D = 0$ on $\pi(X)$ then
 \[f^D + a_1 f^{D-1} + \ldots + a_{D-1} f = 0 \text{ on } X. \]
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take

 $$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X$$

 with D minimal.

- For $y \in Y \subset X$

 $$f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0$$

- Since $f(y) = 0$ for $y \in Y$,

 $$a_D(\pi(y)) = 0 \implies a_D = 0 \text{ on } \pi(Y).$$

- If $a_D = 0$ on $\pi(X)$ then

 $$f^D + a_1 f^{D-1} + \ldots + a_{D-1} f = 0 \text{ on } X.$$
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take
 \[
 f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X
 \]
 with D minimal.

- For $y \in Y \subset X$
 \[
 f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0
 \]

- Since $f(y) = 0$ for $y \in Y$,
 \[
 a_D(\pi(y)) = 0 \implies a_D = 0 \text{ on } \pi(Y).
 \]

- If $a_D = 0$ on $\pi(X)$ then
 \[
 f^D + a_1 f^{D-1} + \ldots + a_{D-1} f = 0 \text{ on } X.
 \]

- $S(X)$ is integral domain, and $f \neq 0$ in $S(X)$.
Expanded solution: Pick f homogeneous, $f \in I(Y) \setminus I(X)$.

- Take $$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X$$ with D minimal.

- For $y \in Y \subset X$ $$f(y)^D + a_1(\pi(y)) \cdot f(y)^{D-1} + \ldots + a_D(\pi(y)) = 0$$

- Since $f(y) = 0$ for $y \in Y$, $$a_D(\pi(y)) = 0 \implies a_D = 0 \text{ on } \pi(Y).$$

- If $a_D = 0$ on $\pi(X)$ then $$f^D + a_1 f^{D-1} + \ldots + a_{D-1} f = 0 \text{ on } X.$$

- $S(X)$ is integral domain, and $f \neq 0$ in $S(X)$.
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

\(a_D \neq 0 \) on \(\pi(X) \),
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

- \(a_D \neq 0 \) on \(\pi(X) \), \(a_D = 0 \) on \(\pi(Y) \)

Conclusion: \(\dim X = \dim \pi(X) \).

Academic conclusion: \(\dim X = \dim P_m \) for some \(m \).
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

\[a_D \neq 0 \text{ on } \pi(X), \quad a_D = 0 \text{ on } \pi(Y) \text{ so } \]

\[\pi(X) \neq \pi(Y). \]
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

\[a_D \neq 0 \text{ on } \pi(X), \quad a_D = 0 \text{ on } \pi(Y) \text{ so} \]

\[\pi(X) \neq \pi(Y). \]

Conclusion: \(\dim X = \dim \pi(X) \).
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

\(a_D \neq 0 \) on \(\pi(X) \), \(a_D = 0 \) on \(\pi(Y) \) so

\[\pi(X) \neq \pi(Y). \]

Conclusion: \(\dim X = \dim \pi(X) \).

Academic conclusion: \(\dim X = \dim \mathbb{P}^m \) for some \(m \).
Cancelation:

\[f^{D-1} + a_1 f^{D-2} + \ldots + a_{D-1} = 0 \]

contradicting minimality of \(D \).

\[a_D \neq 0 \text{ on } \pi(X), \quad a_D = 0 \text{ on } \pi(Y) \text{ so } \]

\[\pi(X) \neq \pi(Y). \]

Conclusion: \(\dim X = \dim \pi(X) \).

Academic conclusion: \(\dim X = \dim \mathbb{P}^m \) for some \(m \).
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)
 Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)

\[\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq \ldots \subsetneq \mathbb{P}^n \subsetneq \]
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)
-

\[\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq \ldots \subsetneq \mathbb{P}^n \subsetneq \]

\[\implies f(0) < f(1) < \ldots < f(n) < \ldots \]
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)
- \(\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq \ldots \subsetneq \mathbb{P}^n \subsetneq \)

\[\implies f(0) < f(1) < \ldots < f(n) < \ldots \]

- **Claim:** no gaps in the values of \(f \).
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)

\[\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq \ldots \subsetneq \mathbb{P}^n \subsetneq \]

\[\implies f(0) < f(1) < \ldots < f(n) < \ldots \]

- Claim: no gaps in the values of \(f \). Hence \(f(n) = n \).
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)

\[\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq \ldots \subsetneq \mathbb{P}^n \subsetneq \]

\[\implies f(0) < f(1) < \ldots < f(n) < \ldots \]

- **Claim:** no gaps in the values of \(f \). Hence \(f(n) = n \).

- **Equivalently:** If \(d \) is a value of \(f \), then all \(0 \leq i < d \) are assumed by \(f \).
Proposition

\[\dim \mathbb{P}^n = n. \]

Proof:

- Let \(f(n) = \dim \mathbb{P}^n \)
- \(\mathbb{P}^0 \subsetneq \mathbb{P}^1 \subsetneq ... \subsetneq \mathbb{P}^n \subsetneq \)

\[\implies f(0) < f(1) < ... < f(n) < ... \]

- Claim: no gaps in the values of \(f \). Hence \(f(n) = n \).

- Equivalently: If \(d \) is a value of \(f \), then all \(0 \leq i < d \) are assumed by \(f \).
If $f(\ell) = d$, pick a longest chain in \mathbb{P}^ℓ:

$$X_0 \subsetneq \ldots \subsetneq X_d$$
If \(f(\ell) = d \), pick a longest chain in \(\mathbb{P}^\ell \):

\[X_0 \subsetneq \ldots \subsetneq X_d \]

For \(i \leq d \), \(\dim X_i = i \).

Next: proof and discussion of Noether normalization.
If $f(\ell) = d$, pick a longest chain in \mathbb{P}^ℓ:

$$X_0 \subsetneq \ldots \subsetneq X_d$$

For $i \leq d$, $\dim X_i = i$.

$\dim X_i = \dim \mathbb{P}^m$ for some m
If $f(\ell) = d$, pick a longest chain in \mathbb{P}^ℓ:

$$X_0 \subsetneq \ldots \subsetneq X_d$$

For $i \leq d$, $\dim X_i = i$.

$\dim X_i = \dim \mathbb{P}^m$ for some m

for all $0 \leq i \leq d$, $f(m) = i$ for some m.
If \(f(\ell) = d \), pick a longest chain in \(\mathbb{P}^\ell \):

\[
X_0 \subsetneq \cdots \subsetneq X_d
\]

For \(i \leq d \), \(\dim X_i = i \).

\(\dim X_i = \dim \mathbb{P}^m \) for some \(m \)

for all \(0 \leq i \leq d \), \(f(m) = i \) for some \(m \).

Next: proof and discussion of Noether normalization.
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.

Remark:

▶ The fibers of $\pi : X \to \mathbb{P}^n - 1$ have $\leq D$ points.

▶ A morphism with finite fibers will be called quasi-finite.
Proposition (Noether normalization)

Let $X \subseteq \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous.
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and $a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$ homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}] \text{ homogeneous}$$

such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Remark:

- The fibers of $\pi : X \to \mathbb{P}^{n-1}$ have $\leq D$ points.
Proposition (Noether normalization)
Let $X \subsetneq \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.
Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Remark:

- The fibers of $\pi : X \to \mathbb{P}^{n-1}$ have $\leq D$ points.
- A morphism with finite fibers will be called quasi-finite.
Proposition (Noether normalization)

Let $X \subsetneq \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.
Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous

such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Remark:

- The fibers of $\pi : X \to \mathbb{P}^{n-1}$ have $\leq D$ points.

- A morphism with finite fibers will be called quasi-finite.
Proof:

- $d = \deg f$. Define

$$\Phi : X \rightarrow \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$
Proof:

- $d = \deg f$. Define

$$\Phi : X \rightarrow \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$

- Φ is well-defined
Proof:

- $d = \text{deg } f$. Define

$$\Phi : X \rightarrow \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$

- Φ is well-defined since $p \not\in X$.
Proof:

- $d = \deg f$. Define

$$\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$

- Φ is well-defined since $p \not\in X$.

- Image of Φ:

$$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$
Proof:

- $d = \deg f$. Define

$$
\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].
$$

- Φ is well-defined since $p \notin X$.

- Image of Φ:

$$
y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).
$$

- $\Phi(X)$ is projective
Proof:

- $d = \text{deg } f$. Define

$$\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$

- Φ is well-defined since $p \notin X$.

- Image of Φ:

$$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$

- $\Phi(X)$ is projective cut out by

$$F_1 = \ldots = F_r = 0.$$
Proof:

- $d = \deg f$. Define
 \[
 \Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].
 \]

- Φ is well-defined since $p \not\in X$.

- Image of Φ:
 \[
 y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).
 \]

- $\Phi(X)$ is projective cut out by
 \[
 F_1 = \ldots = F_r = 0.
 \]

- Claim:
 \[
 Z(F_1, \ldots, F_r, y_0, \ldots, y_{n-1}) = \emptyset
 \]
Proof:

- $d = \deg f$. Define

 $$\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f(x)].$$

- Φ is well-defined since $p \notin X$.

- Image of Φ:

 $$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \ y_n = f(x).$$

- $\Phi(X)$ is projective cut out by

 $$F_1 = \ldots = F_r = 0.$$

- Claim:

 $$Z(F_1, \ldots, F_r, y_0, \ldots, y_{n-1}) = \emptyset$$
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_j F_j \cdot G_j \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)
- **Nullstellensatz**

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum F_j \cdot G_j \]

- **WLOG**: \(\deg g_i = D - 1 \)

- Substitute \(y = \Phi(x) \),
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_j F_j \cdot G_j \]

\begin{itemize}
 \item WLOG: \(\deg g_i = D - 1 \)
 \item Substitute \(y = \Phi(x) \),
\end{itemize}

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_j F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]

\[= \sum_{j=0}^{D-1} a_j(x_0, \ldots, x_{n-1}) f^j. \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_{j} F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]

\[= \sum_{j=0}^{D-1} a_j(x_0, \ldots, x_{n-1}) f^j. \]
Going further

We know \(\dim \mathbb{P}^n = n \).
Going further

We know \(\dim \mathbb{P}^n = n \).

Goals:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
Going further

We know \(\dim \mathbb{P}^n = n \).

Goals:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
- Show \(\dim X \cap Z(f) = \dim X - 1 \)
Going further

We know \(\dim \mathbb{P}^n = n \).

Goals:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
- Show \(\dim X \cap Z(f) = \dim X - 1 \)
- Discuss affine varieties and arbitrary varieties
Going further

We know $\dim \mathbb{P}^n = n$.

Goals:

- Show $\dim Z(f) = n - 1$ for a single polynomial f?
- Show $\dim X \cap Z(f) = \dim X - 1$
- Discuss affine varieties and arbitrary varieties
- Further topics ...
Going further

We know \(\dim \mathbb{P}^n = n \).

Goals:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
- Show \(\dim X \cap Z(f) = \dim X - 1 \)
- Discuss affine varieties and arbitrary varieties
- further topics ...
Going further

We know \(\dim \mathbb{P}^n = n \).

Goals:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
- Show \(\dim X \cap Z(f) = \dim X - 1 \)
- Discuss affine varieties and arbitrary varieties
- Further topics ...