Math 203A
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.

▶ Geometrically, $\pi: X \to \pi(X)$ is quasi-finite.

▶ We would like to explore this further.
Last time

Proposition (Noether normalization)
Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.
Let $f \in k[x_0, \ldots, x_n]$ homogeneous.
Last time

Proposition (Noether normalization)

Let $X \subseteq \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$. Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0$$

on X.

Geometrically, $\pi: X \to \pi(X)$ is quasi-finite. We would like to explore this further.
Last time

Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$.

Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

▶ Geometrically, $\pi : X \to \pi(X)$ is quasi-finite.
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$. Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

homogeneous

such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

- Geometrically, $\pi : X \rightarrow \pi(X)$ is quasi-finite.

- We would like to explore this further.
Proposition (Noether normalization)
Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$. Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and

$$a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$$

such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Geometrically, $\pi : X \rightarrow \pi(X)$ is quasi-finite.

We would like to explore this further.
Detour: Finite maps - affine case

We already defined quasi-finite maps.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.

- B is integral over A if all $x \in B$ satisfy a monic equation
 \[x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.

- **B is integral over A** if all $x \in B$ satisfy a monic equation

 \[x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]

- **B is finite over A** if B is finitely generated A-module.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: \(A \subseteq B \) are rings.

- \(B \) is integral over \(A \) if all \(x \in B \) satisfy a monic equation
 \[
x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A.
 \]

- \(B \) is finite over \(A \) if \(B \) is finitely generated \(A \)-module.

- for finitely generated \(k \)-algebras
 \[
 \text{finite} \iff \text{integral}
 \]
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.

- B is integral over A if all $x \in B$ satisfy a monic equation
 \[x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]

- B is finite over A if B is finitely generated A-module.

- for finitely generated k-algebras

 \[\text{finite} \iff \text{integral} \]
Key property - going up

Given

- $A \subset B$ integral
Key property - going up

Given

- $A \subset B$ integral
- $p \subset A$ prime ideal
Key property - going up

Given

- $A \subset B$ integral
- $p \subset A$ prime ideal

there exists

- $q \subset B$ prime

$q \cap A = p$.
Key property - going up

Given

- $A \subset B$ integral
- $p \subset A$ prime ideal

there exists

- $q \subset B$ prime

$q \cap A = p$.

q maximal $\iff p$ maximal.
Geometrically: Let $f : X \rightarrow Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \rightarrow A(X).$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \to A(X).$$

- **Claim:** f^* is injective.
Geometrically: Let \(f : X \rightarrow Y \) be dominant morphism of affine varieties, and

\[
f^* : A(Y) \rightarrow A(X).
\]

▶ **Claim:** \(f^* \) is injective.

\[
f^* \phi = 0
\]
Geometrically: Let $f : X \to Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \to A(X).$$

Claim: f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \to A(X).$$

Claim: f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X)$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \to A(X).$$

Claim: f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.$$
Geometrically: Let \(f : X \to Y \) be dominant morphism of affine varieties, and
\[
f^* : A(Y) \to A(X).
\]

- **Claim:** \(f^* \) is injective.

\[
f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.
\]

- think \(A(Y) \hookrightarrow A(X) \)
Geometrically: Let \(f : X \to Y \) be dominant morphism of affine varieties, and

\[f^* : A(Y) \to A(X). \]

▶ Claim: \(f^* \) is injective.

\[f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y. \]

▶ think \(A(Y) \hookrightarrow A(X) \)

▶ \(f \) is finite/integral if \(A(Y) \hookrightarrow A(X) \) is finite/integral.
Geometrically: Let $f : X \to Y$ be dominant morphism of affine varieties, and

$$f^* : A(Y) \to A(X).$$

- **Claim:** f^* is injective.

 $$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.$$

- think $A(Y) \hookrightarrow A(X)$

- f is finite/integral if $A(Y) \hookrightarrow A(X)$ is finite/integral.
Algebra is the offer made by the devil to the mathematician.

The devil says: ‘I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine.’

M. Atiyah
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0$$

for $a_i \in A(Y)$. Thus $t_i(x)$ takes on finitely many values.

As y varies, the points in $f^{-1}(y)$ can come together but cannot disappear.
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \text{ for } a_i \in A(Y).$$

▶ for each $y \in Y$, $x \in f^{-1}(y)$,

$$t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0$$
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0$$

for $a_i \in A(Y)$.

▶ for each $y \in Y$, $x \in f^{-1}(y)$,

$$t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0$$

Thus $t_i(x)$ takes on finitely many values.
Intuitively: If \(X \subset \mathbb{A}^n \), the coordinate function \(t_i \in A(X) \) satisfies

\[
t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \quad \text{for} \quad a_i \in A(Y).
\]

▶ for each \(y \in Y \), \(x \in f^{-1}(y) \),

\[
t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0
\]

Thus \(t_i(x) \) takes on finitely many values.

\[
\text{finite} \implies \text{quasi-finite}
\]
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies
\[
t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \text{ for } a_i \in A(Y).
\]

- for each $y \in Y$, $x \in f^{-1}(y)$,
\[
t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0
\]
Thus $t_i(x)$ takes on finitely many values.

\[
finitel = \implies quasi-finite
\]

- As y varies, the points in $f^{-1}(y)$ can come together but cannot disappear.
Intuitively: If \(X \subset \mathbb{A}^n \), the coordinate function \(t_i \in A(X) \) satisfies
\[
t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \text{ for } a_i \in A(Y).
\]

▶ for each \(y \in Y \), \(x \in f^{-1}(y) \),
\[
t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0
\]
Thus \(t_i(x) \) takes on finitely many values.

\textit{finite} \implies \textit{quasi−finite}

▶ As \(y \) varies, the points in \(f^{-1}(y) \) can \textit{come together} but cannot \textit{dissapear}. Draw!
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite,
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.
Example:

\[Z = \{xy - 1 = 0\}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.
Example:

\[Z = \{xy - 1 = 0\}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite} \]
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\(\pi : X \to X/G \) is finite since \(A(X)^G \hookrightarrow A(X) \) is integral.
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite since } A(X)^G \hookrightarrow A(X) \text{ is integral.} \]

Example:

\(f : X \to Y, \ g : Y \to Z \) finite \(\implies g \circ f : X \to Z \) is finite.
Example:

\[Z = \{xy - 1 = 0\}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite since } A(X)^G \hookrightarrow A(X) \text{ is integral.} \]

Example:

\(f : X \to Y, \quad g : Y \to Z \) finite \(\implies g \circ f : X \to Z \) is finite.
Lemma

For a finite morphism of affine varieties $f : X \to Y$

Proof:

(i) $A(Y) \hookrightarrow A(X)$ integral \Rightarrow satisfies going up

If $y \in Y$, let m_y be the maximal ideal in $A(Y)$.

Let n maximal ideal in $A(X)$ such that $n \cap A(Y) = m_y$.

n corresponds to $x \in X$.

Check: $f(x) = y \iff m_x \cap A(Y) = m_y$.

Thus $f(x) = y$.
Lemma
For a finite morphism of affine varieties $f : X \rightarrow Y$

(i) f is surjective
Lemma
For a finite morphism of affine varieties $f : X \to Y$

(i) f is surjective
(ii) f is closed
Lemma

For a finite morphism of affine varieties $f : X \to Y$

(i) f is surjective
(ii) f is closed

Proof:
Lemma
For a finite morphism of affine varieties $f : X \to Y$

(i) f is surjective

(ii) f is closed

Proof:

(i)

$$A(Y) \hookrightarrow A(X) \text{ integral} \quad \implies \quad \text{satisfies going \textit{- up}}$$
Lemma
For a finite morphism of affine varieties $f : X \rightarrow Y$

(i) f is surjective
(ii) f is closed

Proof:
(i)

$$A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies going \text{– up}}$$

- If $y \in Y$, let m_y be the maximal ideal in $A(Y)$.
Lemma
For a finite morphism of affine varieties $f : X \to Y$

(i) f is surjective
(ii) f is closed

Proof:
(i)

$$A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies } \text{going up}$$

- If $y \in Y$, let m_y be the maximal ideal in $A(Y)$.
- Let n maximal ideal in $A(X)$ such that $n \cap A(Y) = m_y$.
Lemma

For a finite morphism of affine varieties \(f : X \rightarrow Y \)

(i) \(f \) is surjective
(ii) \(f \) is closed

Proof:
(i)

\[
A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies } going \cdash up
\]

- If \(y \in Y \), let \(m_y \) be the maximal ideal in \(A(Y) \).
- Let \(n \) maximal ideal in \(A(X) \) such that
\[
\text{n} \cap A(Y) = m_y.
\]

\(n \) corresponds to \(x \in X \).
Lemma
For a finite morphism of affine varieties \(f : X \rightarrow Y \)

(i) \(f \) is surjective
(ii) \(f \) is closed

Proof:
(i)
\[A(Y) \hookrightarrow A(X) \text{ integral} \implies \text{ satisfies going up} \]

- If \(y \in Y \), let \(m_y \) be the maximal ideal in \(A(Y) \).
- Let \(n \) maximal ideal in \(A(X) \) such that
 \[n \cap A(Y) = m_y. \]
 \(n \) corresponds to \(x \in X \).
- Check:
 \[f(x) = y \iff m_x \cap A(Y) = m_y. \]
Lemma
For a finite morphism of affine varieties $f : X \to Y$

(i) f is surjective
(ii) f is closed

Proof:

(i)

$A(Y) \hookrightarrow A(X)$ integral \implies satisfies going up

- If $y \in Y$, let m_y be the maximal ideal in $A(Y)$.
- Let n maximal ideal in $A(X)$ such that $n \cap A(Y) = m_y$.

 n corresponds to $x \in X$.
- Check:
 $$f(x) = y \iff m_x \cap A(Y) = m_y.$$
-
 Thus $f(x) = y$.
Lemma
For a finite morphism of affine varieties \(f : X \to Y \)

(i) \(f \) is surjective

(ii) \(f \) is closed

Proof:
(i)

\[A(Y) \hookrightarrow A(X) \text{ integral } \iff \text{satisfies } going \text{-} up \]

- If \(y \in Y \), let \(m_y \) be the maximal ideal in \(A(Y) \).
- Let \(n \) maximal ideal in \(A(X) \) such that \(n \cap A(Y) = m_y \).

\(n \) corresponds to \(x \in X \).

- Check:

\[f(x) = y \iff m_x \cap A(Y) = m_y. \]

- Thus \(f(x) = y \).
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \to W, \quad W = \overline{f(Z)}.$$
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \rightarrow W, \ W = \overline{f(Z)}.$$

Check: $f|_Z$ finite.
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \rightarrow W, \ W = \overline{f(Z)}.$$

Check: $f|_Z$ finite.

By (i), f is surjective,
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \to W, \quad W = \overline{f(Z)}.$$

Check: $f|_Z$ finite.

By (i), f is surjective, so $W = f(Z)$.
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \to W, \quad W = \overline{f(Z)}.$$

Check: $f|_Z$ finite.

By (i), f is surjective, so $W = f(Z)$. Thus $f(Z)$ closed.
(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \to W, \quad W = \overline{f(Z)}.$$

Check: $f|_Z$ finite.

By (i), f is surjective, so $W = f(Z)$. Thus $f(Z)$ closed.
Finite maps in general

If X, Y are varieties, $f : X \rightarrow Y$ is finite
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine cover V_α of Y s.t.
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine cover V_α of Y s.t.

- $U_\alpha = f^{-1}(V_\alpha)$ is affine
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine cover V_α of Y s.t.

- $U_\alpha = f^{-1}(V_\alpha)$ is affine
- $f : U_\alpha \to V_\alpha$ is finite.
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine cover V_α of Y s.t.

- $U_\alpha = f^{-1}(V_\alpha)$ is affine
- $f : U_\alpha \to V_\alpha$ is finite.
Rephrasing of Noether normalization

Theorem

Let \(p \notin X \subset \mathbb{P}^n \). The *projection* away from \(p \)

\[
\pi : X \to \pi(X)
\]

is a *finite morphism*.
Rephrasing of Noether normalization

Theorem

Let \(p \notin X \subset \mathbb{P}^n \). The projection away from \(p \)

\[
\pi : X \to \pi(X)
\]

is a finite morphism.

Proof: Work locally in the affine

\[
W = \{ x_0 = 1 \} \simeq \mathbb{A}^n \subset \mathbb{P}^n, \quad U = W \cap X \text{ affine open in } X.
\]
Theorem

Let \(p \notin X \subset \mathbb{P}^n \). The projection away from \(p \)

\[
\pi : X \to \pi(X)
\]

is a finite morphism.

Proof: Work locally in the affine

\[
W = \{x_0 = 1\} \cong \mathbb{A}^n \subset \mathbb{P}^n, \quad U = W \cap X \text{ affine open in } X.
\]

Let

\[
V = \pi(U) = \pi(X) \cap \mathbb{A}^{n-1} \hookrightarrow \mathbb{A}^{n-1} \text{ is closed, hence affine}.
\]
Rephrasing of Noether normalization

Theorem
Let \(p \notin X \subset \mathbb{P}^n \). The projection away from \(p \)
\[\pi : X \rightarrow \pi(X) \]
is a finite morphism.

Proof: Work locally in the affine
\[W = \{ x_0 = 1 \} \cong \mathbb{A}^n \subset \mathbb{P}^n, \ U = W \cap X \text{ affine open in } X. \]

Let
\[V = \pi(U) = \pi(X) \cap \mathbb{A}^{n-1} \hookrightarrow \mathbb{A}^{n-1} \text{ is closed, hence affine.} \]

We show \(\pi : U \rightarrow V \) is a finite map.
Rephrasing of Noether normalization

Theorem

Let \(p \notin X \subseteq \mathbb{P}^n \). The projection away from \(p \)

\[
\pi : X \to \pi(X)
\]

is a **finite morphism**.

Proof: Work locally in the affine

\[
W = \{x_0 = 1\} \simeq \mathbb{A}^n \subset \mathbb{P}^n, \ U = W \cap X \text{ affine open in } X.
\]

Let

\[
V = \pi(U) = \pi(X) \cap \mathbb{A}^{n-1} \hookrightarrow \mathbb{A}^{n-1} \text{ is closed, hence affine.}
\]

We show \(\pi : U \to V \) is a **finite map**.
If $f(x_1, \ldots, x_n)$ regular on U, form $\tilde{f}(x_0, \ldots, x_n)$ homogeneous.
If \(f(x_1, \ldots, x_n) \) regular on \(U \), form \(\bar{f}(x_0, \ldots, x_n) \) homogeneous.

By lemma,

\[
\bar{f}^D + \bar{a}_1 \bar{f}^{D-1} + \ldots + \bar{a}_D = 0 \text{ on } X.
\]
If $f(x_1, \ldots, x_n)$ regular on U, form $\bar{f}(x_0, \ldots, x_n)$ homogeneous.

By lemma,

$$\bar{f}^D + a_1 \bar{f}^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Set

$$x_0 = 1, \bar{a}_i = a_i(1, x_1, \ldots, x_n)$$

are regular on $\pi(U) = V$.
If \(f(x_1, \ldots, x_n) \) regular on \(U \), form \(\bar{f}(x_0, \ldots, x_n) \) homogeneous.

By lemma,

\[
\bar{f}^D + \bar{a}_1 \bar{f}^{D-1} + \ldots + \bar{a}_D = 0 \text{ on } X.
\]

Set

\[
x_0 = 1, \bar{a}_i = a_i(1, x_1, \ldots, x_n)
\]

are regular on \(\pi(U) = V \).

Thus all \(f \in A(U) \) satisfy a monic equation with coefficients in \(a_i \in A(V) \).
If \(f(x_1, \ldots, x_n) \) regular on \(U \), form \(\bar{f}(x_0, \ldots, x_n) \) homogeneous.

By lemma,
\[
\bar{f}^D + \bar{a}_1 \bar{f}^{D-1} + \ldots + \bar{a}_D = 0 \text{ on } X.
\]

Set
\[
x_0 = 1, \bar{a}_i = a_i(1, x_1, \ldots, x_n)
\]
are regular on \(\pi(U) = V \).

Thus all \(f \in A(U) \) satisfiy a monic equation with coefficients in \(a_i \in A(V) \).
Noether normalization

- If X is projective, there exists a finite morphism
 \[\pi : X \to \mathbb{P}^m, \]
 where $m = \text{dim } X$.

- If X is affine, there exists a finite morphism
 \[\pi : X \to \mathbb{A}^m. \]
Roadmap

We know \(\dim \mathbb{P}^n = n \).
We know \(\dim \mathbb{P}^n = n \).

Goals:
- Show \(\dim X \cap Z(f) = \dim X - 1 \).
We know \(\dim \mathbb{P}^n = n \).

Goals:
- Show \(\dim X \cap Z(f) = \dim X - 1 \).
- Discuss affine varieties and arbitrary varieties.
We know $\dim \mathbb{P}^n = n$.

Goals:

- Show $\dim X \cap Z(f) = \dim X - 1$.
- Discuss *affine* varieties and *arbitrary* varieties.
- Show $\dim U = \dim X$ for $U \subset X$ open.
We know $\dim \mathbb{P}^n = n$.

Goals:

- Show $\dim X \cap Z(f) = \dim X - 1$.
- Discuss affine varieties and arbitrary varieties.
- Show $\dim U = \dim X$ for $U \subset X$ open.
- Further topics....
We know \(\dim \mathbb{P}^n = n \).

Goals:
- Show \(\dim X \cap Z(f) = \dim X - 1 \).
- Discuss **affine** varieties and **arbitrary** varieties.
- Show \(\dim U = \dim X \) for \(U \subset X \) open.
- further topics....
Theorem

Let \(X \subset \mathbb{P}^n \) projective variety,

Then \(\dim X \cap Z(f) = \dim X - 1 \).

Remark: This means one irreducible component of \(X \cap Z(f) \) has dimension \(\dim X - 1 \).

There could potentially be components of smaller dimension.

Reduction to linear \(f \): If \(\deg f = d \), use Veronese \(v : \mathbb{P}^n \rightarrow \mathbb{P}^{N} \).

\[v(X \cap Z(f)) = v(X) \cap Z(\ell) \).

Dimension drops by 1 on RHS, \(v \) is isomorphism, so same is true on LHS.
Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X.

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$. There could potentially be components of smaller dimension.

Reduction to linear f: If $\deg f = d$, use Veronese $v: \mathbb{P}^n \to \mathbb{P}^N$.

$v(X \cap Z(f)) = v(X) \cap Z(\ell)$. Dimension drops by 1 on RHS, v is isomorphism, so same is true on LHS.
Intersections with hypersurfaces - Part I

Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$
Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$.

Reduction to linear f: If $\deg f = d$, use Veronese v: $\mathbb{P}^n \to \mathbb{P}^{Nd}$.

$v(X \cap Z(f)) = v(X) \cap Z(\ell)$.

Dimension drops by 1 on RHS, v is isomorphism, so same is true on LHS.
Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$.

There could potentially be components of smaller dimension.
Theorem
Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$.

There could potentially be components of smaller dimension.

Reduction to linear f: If $\deg f = d$, use Veronese $v: \mathbb{P}^n \to \mathbb{P}^N$.
Intersections with hypersurfaces - Part I

Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$.

There could potentially be components of smaller dimension.

Reduction to linear f: If $\deg f = d$, use Veronese $\nu : \mathbb{P}^n \to \mathbb{P}^N$.

$$\nu(X \cap Z(f)) = \nu(X) \cap Z(\ell).$$
Theorem
Let \(X \subset \mathbb{P}^n \) projective variety, and \(f \in k[x_0, \ldots, x_n] \) non-constant homogeneous, not identically zero on \(X \). Then

\[
\dim X \cap Z(f) = \dim X - 1.
\]

Remark: This means one irreducible component of \(X \cap Z(f) \) has dimension \(\dim X - 1 \).

There could potentially be components of smaller dimension.

Reduction to linear \(f \): If \(\deg f = d \), use Veronese \(\nu : \mathbb{P}^n \to \mathbb{P}^N \).

\[
\nu(X \cap Z(f)) = \nu(X) \cap Z(\ell).
\]

Dimension drops by 1 on RHS, \(\nu \) is isomorphism, so same is true on LHS.
Intersections with hypersurfaces - Part I

Theorem

Let $X \subset \mathbb{P}^n$ projective variety, and $f \in k[x_0, \ldots, x_n]$ non-constant homogeneous, not identically zero on X. Then

$$\dim X \cap Z(f) = \dim X - 1.$$

Remark: This means one irreducible component of $X \cap Z(f)$ has dimension $\dim X - 1$.

There could potentially be components of smaller dimension.

Reduction to linear f: If $\deg f = d$, use Veronese $\nu : \mathbb{P}^n \to \mathbb{P}^N$.

$$\nu(X \cap Z(f)) = \nu(X) \cap Z(\ell).$$

Dimension drops by 1 on RHS, ν is isomorphism, so same is true on LHS.
Assume f linear.
Assume f linear. Let $m = \dim X$, $m \leq n$.
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}.
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- base case: $X_0 = X$, $f_0 = f$
Assume \(f \) linear. Let \(m = \dim X, \ m \leq n \).

Construct inductively linear forms \(f_0, \ldots, f_m \) and sets \(X_0, \ldots, X_{m+1} \)

- **base case:** \(X_0 = X, \ f_0 = f \)
- **inductive step:** set \(X_{i+1} = X_i \cap Z(f_i) \)
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- base case: $X_0 = X$, $f_0 = f$
- inductive step: set $X_{i+1} = X_i \cap Z(f_i)$
- pick f_{i+1} not vanishing identically on each component of X_{i+1},
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- **base case**: $X_0 = X$, $f_0 = f$

- **inductive step**: set $X_{i+1} = X_i \cap Z(f_i)$

- pick f_{i+1} not vanishing identically on each component of X_{i+1}, independent of f_0, \ldots, f_i.

Why possible? First condition is clear, second condition automatic by looking at X_{i+1}.

Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- base case: $X_0 = X$, $f_0 = f$

- inductive step: set $X_{i+1} = X_i \cap Z(f_i)$

- pick f_{i+1} not vanishing identically on each component of X_{i+1}, independent of f_0, \ldots, f_i.

Why possible?
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- **base case:** $X_0 = X$, $f_0 = f$

- **inductive step:** set $X_{i+1} = X_i \cap Z(f_i)$

- pick f_{i+1} not vanishing identically on each component of X_{i+1}, independent of f_0, \ldots, f_i.

Why possible? **First** condition is clear,
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- **base case:** $X_0 = X$, $f_0 = f$

- **inductive step:** set $X_{i+1} = X_i \cap Z(f_i)$

- pick f_{i+1} not vanishing identically on each component of X_{i+1}, independent of f_0, \ldots, f_i.

Why possible? **First** condition is clear, **second** condition automatic by looking at X_{i+1}.
Assume f linear. Let $m = \dim X$, $m \leq n$.

Construct inductively linear forms f_0, \ldots, f_m and sets X_0, \ldots, X_{m+1}

- base case: $X_0 = X$, $f_0 = f$

- inductive step: set $X_{i+1} = X_i \cap Z(f_i)$

- pick f_{i+1} not vanishing identically on each component of X_{i+1}, independent of f_0, \ldots, f_i.

Why possible? First condition is clear, second condition automatic by looking at X_{i+1}.
components of X_{i+1} are strictly contained in components of X_i.
- components of X_{i+1} are strictly contained in components of X_i.

- Inductively $\dim X_i \leq m - i$.
• components of X_{i+1} are strictly contained in components of X_i.

• Inductively $\text{dim } X_i \leq m - i$.

• Thus $X_{m+1} = \emptyset$
• components of X_{i+1} are strictly contained in components of X_i.

• Inductively $\dim X_i \leq m - i$.

• Thus $X_{m+1} = \emptyset \implies Z(f_0, \ldots, f_m) \cap X = \emptyset$.
components of X_{i+1} are strictly contained in components of X_i.

Inductively $\dim X_i \leq m - i$.

Thus $X_{m+1} = \emptyset \implies Z(f_0, \ldots, f_m) \cap X = \emptyset$.

$f : X \to \mathbb{P}^m, \quad f = [f_0 : f_1 : \ldots : f_m]$ is well-defined.
- components of X_{i+1} are strictly contained in components of X_i.

- Inductively $\dim X_i \leq m - i$.

- Thus $X_{m+1} = \emptyset \implies Z(f_0,\ldots,f_m) \cap X = \emptyset$.

- $f : X \to \mathbb{P}^m$, $f = [f_0 : f_1 : \ldots : f_m]$ is well-defined.

- WLOG $f_i = x_i$ so

 $$f = \pi = \text{projection}.$$
- Components of X_{i+1} are strictly contained in components of X_i.

- Inductively $\dim X_i \leq m - i$.

- Thus $X_{m+1} = \emptyset \implies Z(f_0, \ldots, f_m) \cap X = \emptyset$.

- $f : X \to \mathbb{P}^m$, $f = [f_0 : f_1 : \ldots : f_m]$ is well-defined.

- WLOG $f_i = x_i$ so

 $$f = \pi = \text{projection}.$$

- $\dim X = m = \dim \mathbb{P}^m \implies f$ is surjective.
- components of X_{i+1} are strictly contained in components of X_i.

- Inductively $\dim X_i \leq m - i$.

- Thus $X_{m+1} = \emptyset \implies Z(f_0, \ldots, f_m) \cap X = \emptyset$.

\[
f : X \to \mathbb{P}^m, \quad f = [f_0 : f_1 : \ldots : f_m]
\]

is well-defined.

- WLOG $f_i = x_i$ so

\[
f = \pi = \text{projection}.
\]

- $\dim X = m = \dim \mathbb{P}^m \implies f$ is surjective.
If all components of $X_1 = X \cap Z(f)$ have dimension $\leq m - 2$, then $X_m = \emptyset$.

Then, $[0 : \cdots : 0 : 1] \in P_m \setminus \pi(X)$ contradicting surjectivity.
If all components of $X_1 = X \cap Z(f)$ have dimension $\leq m - 2$, then $X_m = \emptyset$.

$Z(f_0, \ldots, f_{m-1}) = \emptyset$ on X.
If all components of $X_1 = X \cap Z(f)$ have dimension $\leq m - 2$, then $X_m = \emptyset$

$Z(f_0, \ldots, f_{m-1}) = \emptyset$ on X.

Then, $[0 : \ldots : 0 : 1] \in \mathbb{P}^m \setminus \pi(X)$
If all components of $X_1 = X \cap Z(f)$ have dimension $\leq m - 2$, then $X_m = \emptyset$

$Z(f_0, \ldots, f_{m-1}) = \emptyset$ on X.

Then, $[0 : \ldots : 0 : 1] \in \mathbb{P}^m \setminus \pi(X)$ contradicting surjectivity.
If all components of $X_1 = X \cap Z(f)$ have dimension $\leq m - 2$, then $X_m = \emptyset$.

$Z(f_0, \ldots, f_{m-1}) = \emptyset$ on X.

Then, $[0 : \ldots : 0 : 1] \in \mathbb{P}^m \setminus \pi(X)$ contradicting surjectivity.