What we know:

- \(\dim \mathbb{P}^n = n \)
What we know:

- $\dim \mathbb{P}^n = n$

- $\dim X \cap Z(f) = \dim X - 1$ for X projective
What we know:

- $\dim \mathbb{P}^n = n$

- $\dim X \cap Z(f) = \dim X - 1$ for X projective

What still needs to be done:
What we know:

- \(\dim \mathbb{P}^n = n \)
- \(\dim X \cap Z(f) = \dim X - 1 \) for \(X \) projective

What still needs to be done:

- dimension of arbitrary varieties
What we know:

- $\dim \mathbb{P}^n = n$

- $\dim X \cap Z(f) = \dim X - 1$ for X projective

What still needs to be done:

- Dimension of arbitrary varieties

- Dimension from field of rational functions
What we know:

- \(\dim \mathbb{P}^n = n \)
- \(\dim X \cap Z(f) = \dim X - 1 \) for \(X \) projective

What still needs to be done:

- Dimension of arbitrary varieties
- Dimension from field of rational functions
- Intersection with hypersurfaces – for all varieties
What we know:

- \(\dim \mathbb{P}^n = n \)
- \(\dim X \cap Z(f) = \dim X - 1 \) for \(X \) projective

What still needs to be done:

- dimension of arbitrary varieties
- dimension from field of rational functions
- intersection with hypersurfaces – for all varieties
- theorem of dimension of fibers
What we know:

> \(\dim \mathbb{P}^n = n \)

> \(\dim X \cap Z(f) = \dim X - 1 \) for \(X \) projective

What still needs to be done:

> dimension of arbitrary varieties

> dimension from field of rational functions

> intersection with hypersurfaces – for all varieties

> theorem of dimension of fibers
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subset X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subseteq X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$

Remarks:

- $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subset X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$

Remarks:

- $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$
- $\dim \mathbb{P}^n \times \mathbb{P}^m = \dim \mathbb{A}^n \times \mathbb{A}^m = \dim \mathbb{A}^{n+m} = n + m$
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let \(U \subset X \) be nonempty open, \(X \) variety. Then

\[
\dim U = \dim X.
\]

Remarks:

- \(\dim \mathbb{A}^n = \dim \mathbb{P}^n = n \)
- \(\dim \mathbb{P}^n \times \mathbb{P}^m = \dim \mathbb{A}^n \times \mathbb{A}^m = \dim \mathbb{A}^{n+m} = n + m \)
- If \(f \in k[x_1, \ldots, x_n], \)
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subset X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$

Remarks:

- $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$
- $\dim \mathbb{P}^n \times \mathbb{P}^m = \dim \mathbb{A}^n \times \mathbb{A}^m = \dim \mathbb{A}^{n+m} = n + m$
- If $f \in k[x_1, \ldots, x_n]$, let
 $$X = Z(f) \subset \mathbb{A}^n, \quad \bar{X} = Z(f^h) \subset \mathbb{P}^n.$$
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subset X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$

Remarks:

- $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$
- $\dim \mathbb{P}^n \times \mathbb{P}^m = \dim \mathbb{A}^n \times \mathbb{A}^m = \dim \mathbb{A}^{n+m} = n + m$
- If $f \in k[x_1, \ldots, x_n]$, let

$$X = Z(f) \subset \mathbb{A}^n, \quad \bar{X} = Z(f^h) \subset \mathbb{P}^n.$$

Then

$$\dim X = \dim \bar{X} = n - 1.$$
Dimension of arbitrary varieties

- we pass from projective varieties to affine varieties.

Theorem

Let $U \subset X$ be nonempty open, X variety. Then

$$\dim U = \dim X.$$

Remarks:

- $\dim \mathbb{A}^n = \dim \mathbb{P}^n = n$
- $\dim \mathbb{P}^n \times \mathbb{P}^m = \dim \mathbb{A}^n \times \mathbb{A}^m = \dim \mathbb{A}^{n+m} = n + m$
- If $f \in k[x_1, \ldots, x_n]$, let

$$X = Z(f) \subset \mathbb{A}^n, \quad \tilde{X} = Z(f^h) \subset \mathbb{P}^n.$$

Then

$$\dim X = \dim \tilde{X} = n - 1.$$

This holds for all components.
Proposition
Let X be a variety. Then

$$\dim X = \operatorname{tr. deg}_k K(X).$$
Proposition
Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \quad K(U) = K(X).$$
Proposition
Let X be a variety. Then

$$\dim X = \text{tr. deg}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \quad K(U) = K(X).$$

Enough to take X affine.
Proposition
Let X be a variety. Then
\[\dim X = \text{tr. deg.}_k K(X). \]

Proof: If $U \subset X$ open, then
\[\dim U = \dim X, \quad K(U) = K(X). \]

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite
\[\pi : X \rightarrow \mathbb{A}^n. \]
Proposition
Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \ K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral.
Proposition
Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \ K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral

$$K(\mathbb{A}^n) \hookrightarrow K(X)$$

is algebraic.
Proposition

Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \quad K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral

$$K(\mathbb{A}^n) \hookrightarrow K(X)$$

is algebraic.

$$\text{tr. deg.}_k K(X) = \text{tr. deg.}_k K(\mathbb{A}^n)$$
Proposition
Let X be a variety. Then

$$\dim X = \text{tr. deg}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \ K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral

$$K(\mathbb{A}^n) \hookrightarrow K(X)$$

is algebraic.

$$\text{tr. deg}_k K(X) = \text{tr. deg}_k K(\mathbb{A}^n) = \text{tr. deg}_k k(t_1, \ldots, t_n)$$
Proposition

Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \quad K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral

$$K(\mathbb{A}^n) \hookrightarrow K(X)$$

is algebraic.

$$\text{tr. deg.}_k K(X) = \text{tr. deg.}_k K(\mathbb{A}^n) = \text{tr. deg.}_k k(t_1, \ldots, t_n) = n = \dim X.$$
Proposition

Let X be a variety. Then

$$\dim X = \text{tr. deg.}_k K(X).$$

Proof: If $U \subset X$ open, then

$$\dim U = \dim X, \quad K(U) = K(X).$$

Enough to take X affine.

Let $n = \dim X$. By Noether normalization construct finite

$$\pi : X \to \mathbb{A}^n.$$

The extension

$$A(\mathbb{A}^n) \hookrightarrow A(X)$$

is integral

$$K(\mathbb{A}^n) \hookrightarrow K(X)$$

is algebraic.

$$\text{tr. deg.}_k K(X) = \text{tr. deg.}_k K(\mathbb{A}^n) = \text{tr. deg.}_k k(t_1, \ldots, t_n) = n = \dim X.$$
Remark*: In complex geometry,

- X compact complex manifold/space

Question: $\dim X = \text{tr. deg. } \mathbb{C}^M(X)$?

Answer: X is Moishezon manifold

- complex algebraic varieties are Moishezon
- the converse is false
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions

Question:

$$\dim X = \text{tr. deg. } \mathbb{C}M(X)?$$
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions

Question:

$$\dim X = \text{tr. deg. } \mathbb{C}M(X)?$$

Answer: X is Moishezon manifold
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions

Question:

$$\dim X = \text{tr. deg. } \mathbb{C}M(X)?$$

Answer: X is Moishezon manifold

- complex algebraic varieties are Moishezon
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions

Question:

$$\dim X = \text{tr. deg. } \mathbb{C}M(X)?$$

Answer: X is Moishezon manifold

- complex algebraic varieties are Moishezon
- the converse is false
Remark*: In complex geometry,

- X compact complex manifold/space
- $M(X)$ the field of meromorphic functions

Question:
\[\dim X = \text{tr. deg. } \mathbb{C} M(X)? \]

Answer: X is Moishezon manifold

- complex algebraic varieties are Moishezon
- the converse is false
Proof of the Theorem: \(\dim U = \dim X \).
Proof of the Theorem: \(\dim U = \dim X \).

- \(\dim U \leq \dim X \):
 - Take chain \(\emptyset \neq U_0 \subset U_1 \subset \ldots \subset U_n = U \).

- WTS: \(\dim U \geq \dim X \):
 - Take chain \(\emptyset \neq X_0 \subset X_1 \subset \ldots \subset X_n = X \).
 - Construct \(U_j = X_j \cap U \), \(U_0 \subset U_1 \subset \ldots \subset U_n = U \).

Issues: repetitions, \(U_0 \) may be empty.
Proof of the Theorem: $\dim U = \dim X$.

$\quad \dim U \leq \dim X$: Take chain

$$\emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.$$
Proof of the Theorem: $\dim U = \dim X$.

- $\dim U \leq \dim X$: Take chain

$$\emptyset \neq U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_n = U.$$

The closure
Proof of the Theorem: \(\dim U = \dim X \).

- \(\dim U \leq \dim X \): Take chain
 \[
 \emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.
 \]

 The closure
 \[
 \emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X
 \]
 is a chain in \(X \).
Proof of the Theorem: \(\dim U = \dim X \).

- **\(\dim U \leq \dim X \):** Take chain
 \[
 \emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.
 \]
 The closure
 \[
 \emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X
 \]
 is a chain in \(X \).

- **WTS:** \(\dim U \geq \dim X \).
Proof of the Theorem: \(\dim U = \dim X \).

- \(\dim U \leq \dim X \): Take chain

 \[\emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U. \]

The closure

\[\emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X \]

is a chain in \(X \).

- WTS: \(\dim U \geq \dim X \). Take chain

 \[\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X. \]
Proof of the Theorem: \(\dim U = \dim X \).

\>
\(\dim U \leq \dim X \): Take chain

\[\emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U. \]

The closure

\[\emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X \]

is a chain in \(X \).

\>
\(\text{WTS: } \dim U \geq \dim X \). Take chain

\[\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X. \]

Construct

\[U_j = X_j \cap U, \]
Proof of the Theorem: \(\dim U = \dim X \).

- \(\dim U \leq \dim X \): Take chain

\[
\emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.
\]

The closure

\[
\emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X
\]

is a chain in \(X \).

- \(\text{WTS: } \dim U \geq \dim X \). Take chain

\[
\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.
\]

Construct

\[
U_j = X_j \cap U, \quad U_0 \subset U_1 \subset \ldots \subset U_n = U.
\]
Proof of the Theorem: \(\dim U = \dim X \).

1. \(\dim U \leq \dim X \): Take chain
 \[
 \emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.
 \]
 The closure
 \[
 \emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X
 \]
 is a chain in \(X \).

2. \(\text{WTS: } \dim U \geq \dim X \). Take chain
 \[
 \emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.
 \]
 Construct
 \[
 U_j = X_j \cap U, \quad U_0 \subset U_1 \subset \ldots \subset U_n = U.
 \]

3. Issues: repetitions, \(U_0 \) may be empty.
Proof of the Theorem: \(\text{dim } U = \text{dim } X \).

- **\(\text{dim } U \leq \text{dim } X \):** Take chain

 \[
 \emptyset \neq U_0 \subsetneq U_1 \subsetneq \ldots \subsetneq U_n = U.
 \]

 The closure

 \[
 \emptyset \neq \overline{U}_0 \subsetneq \overline{U}_1 \subsetneq \ldots \subsetneq \overline{U}_n = X
 \]

 is a chain in \(X \).

- **\(\text{WTS}: \text{dim } U \geq \text{dim } X \):** Take chain

 \[
 \emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.
 \]

 Construct

 \[
 U_j = X_j \cap U, \quad U_0 \subset U_1 \subset \ldots \subset U_n = U.
 \]

- **Issues:** repetitions, \(U_0 \) may be empty.
Strategy:

(i) The case $X_0 \subset U$
Strategy:

(i) The case $X_0 \subset U$

(ii) X projective
Strategy:

(i) The case $X_0 \subset U$
(ii) X projective
(iii) X affine
Strategy:

(i) The case $X_0 \subset U$

(ii) X projective

(iii) X affine

(iv) X arbitrary
Strategy:

(i) The case $X_0 \subset U$

(ii) X projective

(iii) X affine

(iv) X arbitrary
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.

If $U_j = U_{j+1}$ then
Step (i)

If \(X_0 \subset U \) we show \(U_j = X_j \cap U \) is a chain in \(U \).

Issue: \(U_j = U_{j+1} \)?

\[Z = X \setminus U. \]

If \(U_j = U_{j+1} \) then

\[X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z) \]
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.

If $U_j = U_{j+1}$ then

$$X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z)$$
$$= (X_j \cap U) \cup (X_{j+1} \cap Z)$$

This is false since X_0 is contained in LHS but not RHS.
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.

If $U_j = U_{j+1}$ then

$$X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z)$$

$$= (X_j \cap U) \cup (X_{j+1} \cap Z)$$

$$= X_j \cup (X_{j+1} \cap Z)$$
Step (i)

If \(X_0 \subset U \) we show \(U_j = X_j \cap U \) is a chain in \(U \).

Issue: \(U_j = U_{j+1} \)?

\(Z = X \setminus U. \)

If \(U_j = U_{j+1} \) then

\[
X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z)
\]
\[
= (X_j \cap U) \cup (X_{j+1} \cap Z)
\]
\[
= X_j \cup (X_{j+1} \cap Z)
\]

By irreducibility,

\[
X_{j+1} = X_{j+1} \cap Z \implies X_{j+1} \subset Z.
\]
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.

If $U_j = U_{j+1}$ then

$$X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z)$$
$$= (X_j \cap U) \cup (X_{j+1} \cap Z)$$
$$= X_j \cup (X_{j+1} \cap Z)$$

By irreducibility,

$$X_{j+1} = X_{j+1} \cap Z \implies X_{j+1} \subset Z.$$

This is false since X_0 is contained in LHS but not RHS.
Step (i)

If $X_0 \subset U$ we show $U_j = X_j \cap U$ is a chain in U.

Issue: $U_j = U_{j+1}$?

$Z = X \setminus U$.

If $U_j = U_{j+1}$ then

$$X_{j+1} = (X_{j+1} \cap U) \cup (X_{j+1} \cap Z)$$
$$= (X_j \cap U) \cup (X_{j+1} \cap Z)$$
$$= X_j \cup (X_{j+1} \cap Z)$$

By irreducibility,

$$X_{j+1} = X_{j+1} \cap Z \implies X_{j+1} \subset Z.$$

This is false since X_0 is contained in LHS but not RHS.
Step (ii)

Let X projective.

Construct longest chain $\emptyset \neq X_0 \subset X_1 \subset \ldots \subset X_n = X$ by downward induction.

Let $X_n = X$.

Given X_n, \ldots, X_j with $\dim X_j = j$ and $X_j \cap U \neq \emptyset$ construct X_j-1 with $\dim X_j-1 = j-1$ and $X_j-1 \cap U \neq \emptyset$.

Pick a non-constant homogeneous polynomial f that is not zero on any irreducible component of $X_j \cap Z$.

A component of $X_j \cap Z (f)$ has dimension $\dim X_j-1 = j-1$. Call it X_j-1.

\[\text{Step (ii)} \]
\[X \text{ projective.} \]
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$.

Pick a non-constant homogeneous polynomial f that is not zero on any irreducible component of $X_j \cap Z$.

A component of $X_j \cap Z (f)$ has dimension $\dim X_j = j - 1$. Call it X_{j-1}.
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j \text{ with } \dim X_j = j \text{ and } X_j \cap U \neq \emptyset$$
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j \text{ with } \dim X_j = j \text{ and } X_j \cap U \neq \emptyset$$

construct

$$X_{j-1} \text{ with } \dim X_{j-1} = j - 1 \text{ and } X_{j-1} \cap U \neq \emptyset.$$
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j \text{ with } \dim X_j = j \text{ and } X_j \cap U \neq \emptyset$$

construct

$$X_{j-1} \text{ with } \dim X_{j-1} = j - 1 \text{ and } X_{j-1} \cap U \neq \emptyset.$$
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j$$ with $\dim X_j = j$ and $X_j \cap U \neq \emptyset$

construct

$$X_{j-1}$$ with $\dim X_{j-1} = j - 1$ and $X_{j-1} \cap U \neq \emptyset$.

- Pick a non-constant homogeneous polynomial f that is not zero on any irreducible component of $X_j \cap Z$.
Step (ii)

\(X \) projective. Construct longest chain

\[
\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X
\]

with \(X_0 \subset U \) by downward induction.

Let \(X_n = X \). Given

\(X_n, \ldots, X_j \) with \(\dim X_j = j \) and \(X_j \cap U \neq \emptyset \)

construct

\(X_{j-1} \) with \(\dim X_{j-1} = j - 1 \) and \(X_{j-1} \cap U \neq \emptyset \).

- Pick a non-constant homogeneous polynomial \(f \) that is not zero on any irreducible component of \(X_j \cap Z \).
- A component of \(X_j \cap Z(f) \) has dimension \(\dim X_j - 1 = j - 1 \).
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j$$ with $\text{dim} \ X_j = j$ and $X_j \cap U \neq \emptyset$

construct

$$X_{j-1}$$ with $\text{dim} \ X_{j-1} = j - 1$ and $X_{j-1} \cap U \neq \emptyset$.

- Pick a non-constant homogeneous polynomial f that is not zero on any irreducible component of $X_j \cap Z$.
- A component of $X_j \cap Z(f)$ has dimension $\text{dim} \ X_j - 1 = j - 1$. Call it X_{j-1}.
Step (ii)

X projective. Construct longest chain

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$$

with $X_0 \subset U$ by downward induction.

Let $X_n = X$. Given

$$X_n, \ldots, X_j$$ with $\dim X_j = j$ and $X_j \cap U \neq \emptyset$

construct

$$X_{j-1}$$ with $\dim X_{j-1} = j - 1$ and $X_{j-1} \cap U \neq \emptyset$.

- Pick a non-constant homogeneous polynomial f that is not zero on any irreducible component of $X_j \cap Z$.
- A component of $X_j \cap Z(f)$ has dimension $\dim X_j - 1 = j - 1$. Call it X_{j-1}.
We show $X_{j-1} \cap U \neq \emptyset$.

Contradiction.
We show $X_{j-1} \cap U \neq \emptyset$.

$X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z$
We show \(X_{j-1} \cap U \neq \emptyset \).

\[
X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f)
\]
We show $X_{j-1} \cap U \neq \emptyset$.

\[X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f) \]

\[\dim X_{j-1} < \dim X_j \cap Z \]
We show $X_{j-1} \cap U \neq \emptyset$.

\[X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f) \]

\[\dim X_{j-1} < \dim X_j \cap Z < \dim X_j \]
We show $X_{j-1} \cap U \neq \emptyset$.

\[X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f) \]

\[\dim X_{j-1} < \dim X_j \cap Z < \dim X_j \]

\[\dim X_{j-1} \leq \dim X_j - 2 = j - 2. \]
We show \(X_{j-1} \cap U \neq \emptyset \).

\[
X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f)
\]

\(\dim X_{j-1} < \dim X_{j} \cap Z < \dim X_j \)

\(\dim X_{j-1} \leq \dim X_j - 2 = j - 2. \)

Contradiction.
We show $X_{j-1} \cap U \neq \emptyset$.

\[X_{j-1} \cap U = \emptyset \implies X_{j-1} \subset Z \implies X_{j-1} \subset (X_j \cap Z) \cap Z(f) \]

\[\dim X_{j-1} < \dim X_j \cap Z < \dim X_j \]
\[\dim X_{j-1} \leq \dim X_j - 2 = j - 2. \]

Contradiction.
Step (iii): Let $X \subset \mathbb{A}^n$ and let $\overline{X} \subset \mathbb{P}^n$ be the projective closure.
Step (iii): Let $X \subset \mathbb{A}^n$ and let $\overline{X} \subset \mathbb{P}^n$ be the projective closure. U, X open in \overline{X}.
Step (iii): Let $X \subset \mathbb{A}^n$ and let $\overline{X} \subset \mathbb{P}^n$ be the projective closure.

U, X open in \overline{X}.

By (ii)

$$\dim X = \dim \overline{X} = \dim U.$$
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$
Step (iv)

Let

\[\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X. \]

Let \(V \) be affine open around \(X_0 \).

Let \(V \) be affine open around \(X_0 \).
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\dim V = \dim X.$$
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\dim V = \dim X.$$

Similarly, there is $W \subset U$ affine open with

$$\dim W = \dim U.$$
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\dim V = \dim X.$$

Similarly, there is $W \subset U$ affine open with

$$\dim W = \dim U.$$

$V \cap W \neq \emptyset$ is open in both V, W.

Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\text{dim } V = \text{dim } X.$$

Similarly, there is $W \subset U$ affine open with

$$\text{dim } W = \text{dim } U.$$

$V \cap W \neq \emptyset$ is open in both V, W so by (iii)

$$\text{dim } V \cap W = \text{dim } V = \text{dim } X.$$
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\dim V = \dim X.$$

Similarly, there is $W \subset U$ affine open with

$$\dim W = \dim U.$$

$V \cap W \neq \emptyset$ is open in both V, W so by (iii)

$$\dim V \cap W = \dim V = \dim X$$

$$\dim V \cap W = \dim W = \dim U.$$
Step (iv)

Let

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X.$$

Let V be affine open around X_0. By (i),

$$\dim V = \dim X.$$

Similarly, there is $W \subset U$ affine open with

$$\dim W = \dim U.$$

$V \cap W \neq \emptyset$ is open in both V, W so by (iii)

$$\dim V \cap W = \dim V = \dim X$$

$$\dim V \cap W = \dim W = \dim U.$$

Thus

$$\dim U = \dim X.$$
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.
Intersections with hypersurfaces - Part II

Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.

▶ Issue: cannot derive from projective case by taking closure.
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.

- **Issue**: cannot derive from projective case by taking closure.

- **Component at infinity of** $\dim X - 1$?
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.

- **Issue:** cannot derive from projective case by taking closure.
- **Component at infinity** of $\dim X - 1$?
- **OK** for $X = \mathbb{A}^n$.
Proposition

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.

- **Issue**: cannot derive from projective case by taking closure.
- **Component at infinity** of $\dim X - 1$?
- **OK** for $X = \mathbb{A}^n$.
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains

Each $a \in B$ gives L-linear map $\mu_a: K \to K$, $k \mapsto ak$. Set $N_{K/L}(a) = \det(\mu_a) \in L$.
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains
- field extension

$L \hookrightarrow K$ is finite.

Define $N_{K/L}: K \ni \star \mapsto L \ni \star$. Each $a \in K$ gives L-linear map $\mu_a: K \rightarrow K$, $k \mapsto a \cdot k$.

Set $N_{K/L}(a) = \text{det}(\mu_a) \in L \ni \star$.
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains
- field extension $L \hookrightarrow K$ is finite.

Define

$$N_{K/L} : K^{\ast} \rightarrow L^{\ast}$$
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains
- field extension

$L \hookrightarrow K$ is finite.

Define

$$N_{K/L} : K^* \rightarrow L^*$$

- Each $a \in K$ gives L-linear map

$$\mu_a : K \rightarrow K, \ k \mapsto a \cdot k.$$
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains
- field extension $L \hookrightarrow K$ is finite.

Define

$$N_{K/L} : K^* \to L^*$$

- Each $a \in K$ gives L-linear map $\mu_a : K \to K, \ k \mapsto a \cdot k$.

- Set

$$N_{K/L}(a) = \det(\mu_a) \in L^*.$$
Algebraic preliminaries: Take

- $B \hookrightarrow A$ extension of integral domains
- field extension

$L \hookrightarrow K$ is finite.

Define

$$N_{K/L} : K^* \rightarrow L^*$$

Each $a \in K$ gives L-linear map

$$\mu_a : K \rightarrow K, \quad k \mapsto a \cdot k.$$

Set

$$N_{K/L}(a) = \det(\mu_a) \in L^*.$$
Algebraic preliminaries:

- **multiplicative:**

\[N_{K/L}(ab) = N_{K/L}(a) \cdot N_{K/L}(b) \]
Algebraic preliminaries:

- **multiplicative:**

 \[N_{K/L}(ab) = N_{K/L}(a) \cdot N_{K/L}(b) \]

- \(a \in L \implies N_{K/L}(a) = a^{[K:L]} \)
Algebraic preliminaries:

- multiplicative:

\[N_{K/L}(ab) = N_{K/L}(a) \cdot N_{K/L}(b) \]

- \(a \in L \implies N_{K/L}(a) = a^{[K:L]} \)

- \(f \in A \implies N_{K/L}(f) \in B. \)
Algebraic preliminaries:

▶ multiplicative:

\[N_{K/L}(ab) = N_{K/L}(a) \cdot N_{K/L}(b) \]

▶ \(a \in L \implies N_{K/L}(a) = a^{[K:L]} \)

▶ \(f \in A \implies N_{K/L}(f) \in B. \)
Proof: Special case $X = \mathbb{A}^n$ proved above.
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$\pi : X \to \mathbb{A}^m.$$
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$\pi : X \to \mathbb{A}^m.$$

Let $f \in A(X)$.
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$\pi : X \to \mathbb{A}^m.$$

Let $f \in A(X)$. Suffices

$$\dim X \cap Z(f) \geq \dim X - 1.$$
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$
\pi : X \to \mathbb{A}^m.
$$

Let $f \in A(X)$. Suffices

$$
\dim X \cap Z(f) \geq \dim X - 1.
$$

Remark: For finite maps

$$
\dim Z = \dim \pi(Z).
$$
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$\pi : X \to \mathbb{A}^m.$$

Let $f \in A(X)$. Suffices

$$\dim X \cap Z(f) \geq \dim X - 1.$$

Remark: For finite maps

$$\dim Z = \dim \pi(Z).$$

We show

$$\pi (X \cap Z(f)) \geq \dim X - 1.$$
Proof: Special case $X = \mathbb{A}^n$ proved above.

General case: Let $m = \dim X$. Noether normalization gives finite

$$\pi : X \to \mathbb{A}^m.$$

Let $f \in A(X)$. Suffices

$$\dim X \cap Z(f) \geq \dim X - 1.$$

Remark: For finite maps

$$\dim Z = \dim \pi(Z).$$

We show

$$\pi (X \cap Z(f)) \geq \dim X - 1.$$
Consider $\pi : X \to \mathbb{A}^m$:

$B = A(A_m), A = A(X) \to B \hookrightarrow A$.

Let $g = N(f) \in B \Rightarrow g$ regular on A_m.

Claim: $\mathbb{Z}(g) \subset \pi(X \cap \mathbb{Z}(f))$.

Then $\dim \pi(X \cap \mathbb{Z}(f)) \geq \dim \mathbb{Z}(g) = m - 1 = \dim X - 1$.
Consider $\pi : X \rightarrow \mathbb{A}^m$:

- $B = A(\mathbb{A}^m)$, $A = A(X)$
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m), \ A = A(X)$
- $B \hookrightarrow A$.
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m), \ A = A(X)$
- $B \hookrightarrow A$

Let

$$g = N(f)$$
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m)$, $A = A(X)$
- $B \hookrightarrow A$

Let

$$g = N(f) \in B \implies g \text{ regular on } \mathbb{A}^m.$$
Consider \(\pi : X \rightarrow \mathbb{A}^m \):

- \(B = A(\mathbb{A}^m) \), \(A = A(X) \)
- \(B \hookrightarrow A \).

Let

\[
g = N(f) \in B \implies g \text{ regular on } \mathbb{A}^m.
\]

Claim:

\[
Z(g) \subset \pi (X \cap Z(f)).
\]
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m)$, $A = A(X)$
- $B \hookrightarrow A$.

Let $g = N(f) \in B \implies g$ regular on \mathbb{A}^m.

Claim:

$Z(g) \subset \pi (X \cap Z(f))$.

Then

$\dim \pi(X \cap Z(f))$
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m), \quad A = A(X)$
- $B \hookrightarrow A$.

Let

$$g = N(f) \in B \implies g \text{ regular on } \mathbb{A}^m.$$

Claim:

$$Z(g) \subset \pi (X \cap Z(f)).$$

Then

$$\dim \pi (X \cap Z(f)) \geq \dim Z(g)$$
Consider $\pi : X \to \mathbb{A}^m$:

- $B = A(\mathbb{A}^m)$, $A = A(X)$
- $B \hookrightarrow A$

Let

$$g = N(f) \in B \implies g \text{ regular on } \mathbb{A}^m.$$

Claim:

$$Z(g) \subset \pi (X \cap Z(f)).$$

Then

$$\dim \pi (X \cap Z(f)) \geq \dim Z(g) = m - 1 = \dim X - 1.$$
Consider \(\pi : X \to \mathbb{A}^m \):

- \(B = A(\mathbb{A}^m) \), \(A = A(X) \)
- \(B \hookrightarrow A \).

Let

\[g = N(f) \in B \implies g \text{ regular on } \mathbb{A}^m. \]

Claim:

\[Z(g) \subset \pi(X \cap Z(f)). \]

Then

\[\dim \pi(X \cap Z(f)) \geq \dim Z(g) = m - 1 = \dim X - 1. \]
Proof of the claim:

\[I(\pi (X \cap Z(f))) \subset IZ(g) \]
Proof of the claim:

\[I(\pi(X \cap Z(f))) \subset IZ(g) \iff fA \cap B \subset \sqrt{(g)}. \]
Proof of the claim:

\[I(\pi(X \cap Z(f))) \subset IZ(g) \iff fA \cap B \subset \sqrt{g}. \]

\[F \in fA \cap B \implies \]

\[F \in \sqrt{g}. \]
Proof of the claim:

\[\{ \pi (X \cap Z(f)) \} \subset I Z(g) \iff f A \cap B \subset \sqrt{g}. \]

\[F \in f A \cap B \implies F = f \cdot \alpha, \quad \alpha \in A \]
Proof of the claim:

\[I(\pi (X \cap Z(f))) \subset IZ(g) \iff fA \cap B \subset \sqrt{g}. \]

\[F \in fA \cap B \implies F = f \cdot \alpha, \ \alpha \in A \]

\[N_{K/L}(F) = N_{K/L}(f) \cdot N_{K/L}(\alpha) \]
Proof of the claim:

\[I(\pi(X \cap Z(f))) \subset IZ(g) \iff fA \cap B \subset \sqrt{(g)}. \]

\[F \in fA \cap B \implies F = f \cdot \alpha, \ \alpha \in A \]

\[N_{K/L}(F) = N_{K/L}(f) \cdot N_{K/L}(\alpha) \]

\[F^{[K:L]} = g \cdot \beta \text{ for } \beta = N_{K/L}(\alpha) \in B \]
Proof of the claim:

\[I(\pi (X \cap Z(f))) \subset IZ(g) \iff f A \cap B \subset \sqrt{(g)} \].

\[F \in f A \cap B \implies F = f \cdot \alpha, \; \alpha \in A \]

\[N_{K/L}(F) = N_{K/L}(f) \cdot N_{K/L}(\alpha) \]

\[F^{[K:L]} = g \cdot \beta \text{ for } \beta = N_{K/L}(\alpha) \in B \]

\[F^{[K:L]} \in (g) \]
Proof of the claim:

\[I(\pi(X \cap Z(f))) \subset IZ(g) \iff fA \cap B \subset \sqrt{(g)}. \]

\[F \in fA \cap B \implies F = f \cdot \alpha, \ \alpha \in A \]

\[N_{K/L}(F) = N_{K/L}(f) \cdot N_{K/L}(\alpha) \]

\[F^{[K:L]} = g \cdot \beta \text{ for } \beta = N_{K/L}(\alpha) \in B \]

\[F^{[K:L]} \in (g) \implies F \in \sqrt{g}. \]