Math 203A
Recap:

- we proved $\dim X = \text{tr. deg.} K(X)$
Recap:

- we proved $\dim X = \text{tr. deg.} K(X)$

- intersections with hypersurfaces: projective or affine case
Recap:

- we proved \(\dim X = \text{tr. deg.} K(X) \)

- intersections with hypersurfaces: projective or affine case

Still to be done:

- loose ends
Recap:

- we proved $\dim X = \text{tr. deg.} K(X)$

- intersections with hypersurfaces: projective or affine case

Still to be done:

- loose ends

- theorem of dimension of fibers
Recap:

- we proved $\dim X = \text{tr. deg.} K(X)$
- intersections with hypersurfaces: projective or affine case

Still to be done:

- loose ends
- theorem of dimension of fibers
Last time

Theorem

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.
Last time

Theorem

\(X \) affine variety, \(f \in k[x_1, \ldots, x_n] \) polynomial that does not vanish identically on \(X \). Then

\[
\dim X \cap Z(f) = \dim X - 1
\]

if nonempty.
Last time

Theorem

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X. Then

$$\dim X \cap Z(f) = \dim X - 1$$

if nonempty.
Corollary

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.
Corollary

\(X \) affine variety, \(f \in k[x_1, \ldots, x_n] \) polynomial that does not vanish identically on \(X \).

When nonempty, all components of \(X \cap Z(f) \) have dimension \(\dim X - 1 \).
Corollary

An affine variety, \(f \in k[x_1, \ldots, x_n] \) polynomial that does not vanish identically on \(X \).

When nonempty, all components of \(X \cap Z(f) \) have dimension \(\dim X - 1 \).

Proof: Let

\[X \cap Z(f) = Z_1 \cup \ldots \cup Z_r. \]
Corollary

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.

When nonempty, all components of $X \cap Z(f)$ have dimension $\dim X - 1$.

Proof: Let

$$X \cap Z(f) = Z_1 \cup \ldots \cup Z_r.$$

WTS: $\dim Z_1 = \dim X - 1$.
Corollary

\(X \) affine variety, \(f \in k[x_1, \ldots, x_n] \) polynomial that does not vanish identically on \(X \).

When nonempty, all components of \(X \cap Z(f) \) have dimension \(\dim X - 1 \).

Proof: Let

\[X \cap Z(f) = Z_1 \cup \ldots \cup Z_r. \]

WTS: \(\dim Z_1 = \dim X - 1 \). Let \(g \in I(Z_2 \cup \ldots \cup Z_r) \setminus I(Z_1) \).
Corollary

X affine variety, *f* ∈ *k*[*x*₁,..., *x*ₙ] polynomial that does not vanish identically on *X*.

When nonempty, all components of *X* ∩ *Z*(*f*) have dimension *dim* *X* − 1.

Proof: Let

\[*X* \cap *Z*(*f*) = *Z*_1 \cup \ldots \cup *Z*_r. \]

WTS: *dim* *Z*_1 = *dim* *X* − 1. Let *g* ∈ *I*(*Z*_2 \cup \ldots \cup *Z*_r) \setminus *I*(*Z*_1).

\[U = *X*_g \text{ is affine.} \]

\[U \cap *Z*(*f*) = U \cap *Z*_1 \]
Corollary

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.

When nonempty, all components of $X \cap Z(f)$ have dimension $\text{dim } X - 1$.

Proof: Let

$$X \cap Z(f) = Z_1 \cup \ldots \cup Z_r.$$

WTS: $\text{dim } Z_1 = \text{dim } X - 1$. Let $g \in I(Z_2 \cup \ldots \cup Z_r) \setminus I(Z_1)$.

$$U = X_g$$ is affine.

$U \cap Z(f) = U \cap Z_1$ has one component
Corollary

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.

When nonempty, all components of $X \cap Z(f)$ have dimension $\dim X - 1$.

Proof: Let

$$X \cap Z(f) = Z_1 \cup \ldots \cup Z_r.$$

WTS: $\dim Z_1 = \dim X - 1$. Let $g \in I(Z_2 \cup \ldots \cup Z_r) \setminus I(Z_1)$.

$U = X_g$ is affine.

$U \cap Z(f) = U \cap Z_1$ has one component $\implies \dim U \cap Z_1 = \dim U - 1$.
Corollary

X affine variety, $f \in k[x_1, \ldots, x_n]$ polynomial that does not vanish identically on X.

When nonempty, all components of $X \cap Z(f)$ have dimension $\dim X - 1$.

Proof: Let

$$X \cap Z(f) = Z_1 \cup \ldots \cup Z_r.$$

WTS: $\dim Z_1 = \dim X - 1$. Let $g \in I(Z_2 \cup \ldots \cup Z_r) \setminus I(Z_1)$.

$U = X_g$ is affine.

$U \cap Z(f) = U \cap Z_1$ has one component $\implies \dim U \cap Z_1 = \dim U - 1$

$\implies \dim Z_1 = \dim X - 1$.
X is affine variety. When nonempty,

\[\dim X \cap Z(f_1, \ldots, f_r) \geq \dim X - r \]

for all components.
X is affine variety. When nonempty,

\[\dim X \cap Z(f_1, \ldots, f_r) \geq \dim X - r \]

for all components.

holds for all varieties X and \(f_i \) regular functions
- X is affine variety. When nonempty,

$$\dim X \cap Z(f_1, \ldots, f_r) \geq \dim X - r$$

for all components.

- holds for all varieties X and f_i regular functions

- holds for projective X and f_i homogeneous
X is affine variety. When nonempty,

$$\dim X \cap Z(f_1, \ldots, f_r) \geq \dim X - r$$

for all components.

holds for all varieties X and f_i regular functions

holds for projective X and f_i homogeneous
\(X, Y \subset \mathbb{A}^n \) affine varieties. When nonempty,

\[
\dim X \cap Y \geq \dim X + \dim Y - n
\]

for all components.
$X, Y \subseteq \mathbb{A}^n$ affine varieties. When nonempty,

$$\dim X \cap Y \geq \dim X + \dim Y - n$$

for all components.

$$X \cap Y = (X \times Y) \cap \Delta,$$
$X, Y \subset \mathbb{A}^n$ affine varieties. When nonempty,

$$\dim X \cap Y \geq \dim X + \dim Y - n$$

for all components.

$$X \cap Y = (X \times Y) \cap \Delta, \quad \Delta = Z(x_1 - y_1, \ldots, x_n - y_n)$$
\(X, Y \subset \mathbb{A}^n \) affine varieties. When nonempty,

\[
\dim X \cap Y \geq \dim X + \dim Y - n
\]

for all components.

\[
X \cap Y = (X \times Y) \cap \Delta, \quad \Delta = \mathbb{Z}(x_1 - y_1, \ldots, x_n - y_n)
\]

\[
\dim X \cap Y \geq \dim(X \times Y) - n.
\]
\(X, Y \subset \mathbb{A}^n \) affine varieties. When nonempty,
\[
\dim X \cap Y \geq \dim X + \dim Y - n
\]
for all components.

\[
X \cap Y = (X \times Y) \cap \Delta, \quad \Delta = \mathbb{Z}(x_1 - y_1, \ldots, x_n - y_n)
\]
\[
\dim X \cap Y \geq \dim(X \times Y) - n.
\]

also true for projective varieties (hwk)
- $X, Y \subset \mathbb{A}^n$ affine varieties. When nonempty,

$$\dim X \cap Y \geq \dim X + \dim Y - n$$

for all components.

$$X \cap Y = (X \times Y) \cap \Delta, \quad \Delta = Z(x_1 - y_1, \ldots, x_n - y_n)$$

$$\dim X \cap Y \geq \dim (X \times Y) - n.$$

- also true for projective varieties (hwk)
Theorem of dimension of fibers

Theorem

Let $f : X \to Y$ be a surjective morphism between varieties with

$$\dim X = n, \quad \dim Y = m.$$
Theorem of dimension of fibers

Theorem
Let $f : X \rightarrow Y$ be a surjective morphism between varieties with

$$\dim X = n, \quad \dim Y = m.$$

(i) Each component F of each fiber $f^{-1}(y)$ has

$$\dim F \geq n - m.$$
Theorem of dimension of fibers

Theorem
Let \(f : X \to Y \) be a surjective morphism between varieties with
\[
\dim X = n, \quad \dim Y = m.
\]

(i) Each component \(F \) of each fiber \(f^{-1}(y) \) has
\[
\dim F \geq n - m.
\]

(ii) There exists \(U \subset Y \) nonempty open with
\[
\dim f^{-1}(y) = n - m \text{ for all } y \in U.
\]
Theorem of dimension of fibers

Theorem

Let \(f : X \rightarrow Y \) be a surjective morphism between varieties with

\[
\dim X = n, \quad \dim Y = m.
\]

(i) Each component \(F \) of each fiber \(f^{-1}(y) \) has

\[
\dim F \geq n - m.
\]

(ii) There exists \(U \subset Y \) nonempty open with

\[
\dim f^{-1}(y) = n - m \text{ for all } y \in U.
\]
Example: for equidimensional fibers

$$\dim X = \dim Y + \dim F$$
Example: for equidimensional fibers

\[\dim X = \dim Y + \dim F \]

Example:

\[\dim X \times Y = \dim X + \dim Y \]
Example: for equidimensional fibers

\[\dim X = \dim Y + \dim F \]

Example:

\[\dim X \times Y = \dim X + \dim Y \]

Example: The incidence variety

\[J = \{(p, L) : p \in L \subset \mathbb{P}^n\} \subset \mathbb{P}^n \times \mathbb{G}(1, n). \]
Example: for equidimensional fibers

\[\dim X = \dim Y + \dim F \]

Example:

\[\dim X \times Y = \dim X + \dim Y \]

Example: The incidence variety

\[J = \{ (p, L) : \ p \in L \subset \mathbb{P}^n \} \subset \mathbb{P}^n \times \mathbb{G}(1, n). \]

\[p : J \to \mathbb{G}(1, n) \]

has fibers

\[p^{-1}([L]) \simeq L \]
Example: for equidimensional fibers
\[\dim X = \dim Y + \dim F \]

Example:
\[\dim X \times Y = \dim X + \dim Y \]

Example: The incidence variety
\[J = \{(p, L) : p \in L \subset \mathbb{P}^n\} \subset \mathbb{P}^n \times \mathbb{G}(1, n). \]

\[p : J \to \mathbb{G}(1, n) \]

has fibers
\[p^{-1}([L]) \simeq L \implies \dim J = \dim \mathbb{G}(1, n) + 1 = 2n - 1. \]
WLOG: Y affine.
WLOG: Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.
WLOG: Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.

Claim:

- there is $U \subset Y$ affine,
- f_1, \ldots, f_m regular with
\textbf{WLOG: }Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.

\textbf{Claim:}

\begin{itemize}
 \item there is $U \subset Y$ affine,
 \item f_1, \ldots, f_m regular with
 \[
 U \cap Z(f_1, \ldots, f_m) = \{y\}
 \]
\end{itemize}
WLOG: Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.

Claim:

- there is $U \subset Y$ affine,
- f_1, \ldots, f_m regular with
 \[U \cap Z(f_1, \ldots, f_m) = \{y\} \]

Proof of (i):

\[f^{-1}(y) = f^{-1}(U) \cap Z(f^*f_1, \ldots, f^*f_m) \]
WLOG: Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.

Claim:

- there is $U \subset Y$ affine,
- f_1, \ldots, f_m regular with

 \[U \cap Z(f_1, \ldots, f_m) = \{y\} \]

Proof of (i):

\[
 f^{-1}(y) = f^{-1}(U) \cap Z(f^*f_1, \ldots, f^*f_m)
\]

\[\Rightarrow \dim f^{-1}(y) \geq \dim f^{-1}(U) - m = n - m \]
WLOG: Y affine.

Let $y \in Y$. We show $\dim F \geq n - m$ for all $F \hookrightarrow f^{-1}(y)$.

Claim:

- there is $U \subset Y$ affine,
- f_1, \ldots, f_m regular with
 $$U \cap Z(f_1, \ldots, f_m) = \{y\}$$

Proof of (i):

$$f^{-1}(y) = f^{-1}(U) \cap Z(f^*f_1, \ldots, f^*f_m)$$

$$\implies \dim f^{-1}(y) \geq \dim f^{-1}(U) - m = n - m$$
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.
Proof of claim:

- Arrange \(Y \cap Z(f_1, \ldots, f_m) \) finite.

 How? Let \(Z_i \) be the components of \(Y \).
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

 How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

 Find f with $f(p_i) \neq 0$, $f(y) = 0$.
Proof of claim:

Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

$$Y^{(1)} = Y \cap Z(f)$$

which has components of dim $\leq \dim Y - 1$.
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

$$Y^{(1)} = Y \cap Z(f)$$

which has components of dim $\leq \dim Y - 1$. Repeat.
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

 How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

$$Y^{(1)} = Y \cap Z(f)$$

which has components of dim $\leq \dim Y - 1$. Repeat.

$$Y^{(m)} = Y \cap Z(f_1, \ldots, f_m)$$ is finite.
Proof of claim:

▸ Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

$$Y^{(1)} = Y \cap Z(f)$$

which has components of dim $\leq \dim Y - 1$. Repeat.

$$Y^{(m)} = Y \cap Z(f_1, \ldots, f_m) \text{ is finite.}$$

▸ If $Y \cap Z(f_1, \ldots, f_m) = \{y, y_1, \ldots, y_p\}$
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

 How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

 Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

 $$Y^{(1)} = Y \cap Z(f)$$

 which has components of dim $\leq \dim Y - 1$. Repeat.

 $$Y^{(m)} = Y \cap Z(f_1, \ldots, f_m)$$

 is finite.

- If $Y \cap Z(f_1, \ldots, f_m) = \{y, y_1, \ldots, y_p\}$ construct g with

 $$g(y) \neq 0, g(y_1) = \ldots = g(y_p) = 0.$$
Proof of claim:

- Arrange $Y \cap Z(f_1, \ldots, f_m)$ finite.

 How? Let Z_i be the components of Y. Pick $p_i \in Z_i \setminus \{y\}$.

Find f with $f(p_i) \neq 0$, $f(y) = 0$. Let

$$Y^{(1)} = Y \cap Z(f)$$

which has components of $\dim \leq \dim Y - 1$. Repeat.

$$Y^{(m)} = Y \cap Z(f_1, \ldots, f_m)$$ is finite.

If $Y \cap Z(f_1, \ldots, f_m) = \{y, y_1, \ldots, y_p\}$ construct g with

$$g(y) \neq 0, g(y_1) = \ldots = g(y_p) = 0.$$

Let

$$U = Y_g = \text{affine}, \ U \cap Z(f_1, \ldots, f_m) = \{y\}.$$
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V)$$
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V)$$

tr. deg. $K(V)/K(Y)$
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

\[f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V) \]

\[\text{tr. deg.} K(V)/K(Y) = \text{tr. deg.} K(V)/k - \text{tr. deg.} K(Y)/k \]
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V)$$

$$\text{tr. deg}.K(V)/K(Y) = \text{tr. deg}.K(V)/k - \text{tr. deg}.K(Y)/k$$

$$= n - m := e.$$

\[f : V \rightarrow Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V) \]

\[
\text{tr. deg.} K(V)/K(Y) = \text{tr. deg.} K(V)/k - \text{tr. deg.} K(Y)/k \\
= n - m := e.
\]

- \(v_1, \ldots, v_N \) coordinates on \(V \subset \mathbb{A}^N \)
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \rightarrow Y \text{ dominant } \implies f^*: K(Y) \hookrightarrow K(V)$$

$$\text{tr. deg.} K(V)/K(Y) = \text{tr. deg.} K(V)/k - \text{tr. deg.} K(Y)/k$$
$$= n - m := e.$$
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$f : V \rightarrow Y$ dominant $\implies f^* : K(Y) \hookrightarrow K(V)$

$$\text{tr. deg.} K(V)/K(Y) = \text{tr. deg.} K(V)/k - \text{tr. deg.} K(Y)/k$$

$$= n - m := e.$$

- v_1, \ldots, v_N coordinates on $V \subset \mathbb{A}^N$
- y_1, \ldots, y_M coordinates on $Y \subset \mathbb{A}^M$
- WLOG: v_1, v_2, \ldots, v_e are algebraically independent over $K(Y)$
Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V)$$

\[
\text{tr. deg.} K(V)/K(Y) = \text{tr. deg.} K(V)/k - \text{tr. deg.} K(Y)/k \\
= n - m := e.
\]

- v_1, \ldots, v_N coordinates on $V \subset \mathbb{A}^N$
- y_1, \ldots, y_M coordinates on $Y \subset \mathbb{A}^M$
- WLOG: v_1, v_2, \ldots, v_e are algebraically independent over $K(Y)$
- v_{e+1}, \ldots, v_n algebraically dependent on $K(Y)[v_1, \ldots, v_e]$.

Proof of (ii): WLOG Y affine. Let $V \subset X$ dense affine open.

$$f : V \to Y \text{ dominant} \implies f^* : K(Y) \hookrightarrow K(V)$$

$$\operatorname{tr. deg.} K(V)/K(Y) = \operatorname{tr. deg.} K(V)/k - \operatorname{tr. deg.} K(Y)/k$$

$$= n - m := e.$$

- v_1, \ldots, v_N coordinates on $V \subset \mathbb{A}^N$
- y_1, \ldots, y_M coordinates on $Y \subset \mathbb{A}^M$
- WLOG: v_1, v_2, \ldots, v_e are algebraically independent over $K(Y)$
- v_{e+1}, \ldots, v_n algebraically dependent on $K(Y)[v_1, \ldots, v_e]$.
for $i > e$, find equations

$$F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) = 0$$
for $i > e$, find equations

$$F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) = 0$$

F_i are polynomials in v_1, \ldots, v_e, v_i with coefficients functions in y
for } i > e, \text{ find equations }
\begin{align*}
F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) &= 0
\end{align*}

\begin{itemize}
\item F_i are polynomials in v_1, \ldots, v_e, v_i with coefficients functions in y
\item Let $Y_i \subset Y$ be the vanishing of the leading term in F_i
\end{itemize}
for $i > e$, find equations

$$F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) = 0$$

F_i are polynomials in v_1, \ldots, v_e, v_i with coefficients functions in y

Let $Y_i \subset Y$ be the vanishing of the leading term in F_i

$$U = Y \setminus \bigcup Y_i \text{ open, nonempty}$$
for $i > e$, find equations

$$F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) = 0$$

F_i are polynomials in v_1, \ldots, v_e, v_i with coefficients functions in y

Let $Y_i \subset Y$ be the vanishing of the leading term in F_i

$U = Y \setminus \bigcup Y_i$ open, nonempty

$F_i(T_i, T_1, \ldots, T_e, y)$ is non-zero polynomial for each fixed $y \in U$
for $i > e$, find equations

$$F_i(v_i; v_1, \ldots, v_e, y_1, \ldots, y_m) = 0$$

F_i are polynomials in v_1, \ldots, v_e, v_i with coefficients functions in y

Let $Y_i \subset Y$ be the vanishing of the leading term in F_i

$U = Y \setminus \bigcup Y_i$ open, nonempty

$F_i(T_i, T_1, \ldots, T_e, y)$ is non-zero polynomial for each fixed $y \in U$
Fix $y \in U$. Restrict $\overline{v}_i = v_i|_{f^{-1}(y) \cap V}$.

\[F_i(v_i, v_1, \ldots, v_e, y) = 0 \Rightarrow F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0 \quad \text{for} \quad i > e, \quad \overline{v}_i \text{ is algebraically dependent on } \overline{v}_1, \ldots, \overline{v}_e. \]

\[\text{tr. deg.} K(f^{-1}(y)) \leq e \Rightarrow \dim f^{-1}(y) \leq e \Rightarrow \dim f^{-1}(y) = e. \]
Fix $y \in U$. Restrict $\overline{v}_i = v_i \big|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$
Fix $y \in U$. Restrict $\overline{v}_i = v_i|_{f^{-1}(y) \cap V}$.

 Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0$$
Fix $y \in U$. Restrict $\bar{v}_i = v_i|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\bar{v}_i, \bar{v}_1, \ldots, \bar{v}_e) = 0$$

for $i > e$, \bar{v}_i is algebraically dependent on $\bar{v}_1, \ldots, \bar{v}_e$
Fix $y \in U$. Restrict $\overline{v}_i = v_i|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0$$

for $i > e$, \overline{v}_i is algebraically dependent on $\overline{v}_1, \ldots, \overline{v}_e$

tr. deg. $K(f^{-1}(y)) \leq e$
Fix $y \in U$. Restrict $\overline{v}_i = v_i \big|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0$$

for $i > e$, \overline{v}_i is algebraically dependent on $\overline{v}_1, \ldots, \overline{v}_e$

$$\text{tr. deg. } K(f^{-1}(y)) \leq e \implies \dim f^{-1}(y) \leq e$$
Fix $y \in U$. Restrict $\overline{v}_i = v_i \big|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0$$

for $i > e$, \overline{v}_i is algebraically dependent on $\overline{v}_1, \ldots, \overline{v}_e$

$$\text{tr. deg. } K(f^{-1}(y)) \leq e \implies \dim f^{-1}(y) \leq e$$

$$\implies \dim f^{-1}(y) = e.$$
Fix $y \in U$. Restrict $\overline{v}_i = v_i\big|_{f^{-1}(y) \cap V}$.

Restrict

$$F_i(v_i; v_1, \ldots, v_e, y) = 0 \text{ to } f^{-1}(y) \cap V$$

$$\implies F_i(\overline{v}_i, \overline{v}_1, \ldots, \overline{v}_e) = 0$$

for $i > e$, \overline{v}_i is algebraically dependent on $\overline{v}_1, \ldots, \overline{v}_e$

\[\text{tr. deg. } K(f^{-1}(y)) \leq e \implies \dim f^{-1}(y) \leq e \]

$$\implies \dim f^{-1}(y) = e.$$
V. Smoothness
Goals:

- define the Zariski tangent space T_pX and tangent cone C_pX
Goals:

- define the Zariski tangent space T_pX and tangent cone C_pX

- smooth points
Goals:

- define the Zariski tangent space T_pX and tangent cone C_pX
- smooth points
- criterion for smoothness
Goals:

- define the Zariski tangent space T_pX and tangent cone C_pX

- smooth points

- criterion for smoothness

- further topics: applications of smoothness, normal, factorial
Goals:

▶ define the Zariski tangent space T_pX and tangent cone C_pX

▶ smooth points

▶ criterion for smoothness

▶ further topics: applications of smoothness, normal, factorial
Zariski tangent space - affine case

Let $X \subset \mathbb{A}^n$, $p \in X$,

\[I = I(X) \subset k[x_1, \ldots, x_n]. \]

Any $f \in k[x_1, \ldots, x_n]$ satisfies:

\[f = f(0) + f(1) + f(2) + \ldots. \]

$I(1) = \{ f(1) : f \in I \}$ is a vector subspace of $k[x_1, \ldots, x_n]$.

The Zariski tangent space $T_p X = Z(I(1)) \subset \mathbb{A}^n$.

Let $X \subset \mathbb{A}^n$, $p \in X$,

WLOG $p = (0, \ldots, 0)$,
Zariski tangent space - affine case

Let $X \subset \mathbb{A}^n$, $p \in X$,

WLOG $p = (0, \ldots, 0)$, $I = I(X) \subset k[x_1, \ldots, x_n]$.
Zariski tangent space - affine case

Let $X \subset \mathbb{A}^n$, $p \in X$, WLOG $p = (0, \ldots, 0)$, $I = I(X) \subset k[x_1, \ldots, x_n]$.

Any $f \in k[x_1, \ldots, x_n]$

\[f = f^{(0)} + f^{(1)} + f^{(2)} + \ldots \]
Let $X \subset \mathbb{A}^n$, $p \in X$,

WLOG $p = (0, \ldots, 0)$, $I = I(X) \subset k[x_1, \ldots, x_n]$.

Any $f \in k[x_1, \ldots, x_n]$

$$f = f^{(0)} + f^{(1)} + f^{(2)} + \ldots$$

$I^{(1)} = \{ f^{(1)} : f \in I \}$
Zariski tangent space - affine case

Let $X \subset \mathbb{A}^n$, $p \in X$,

WLOG $p = (0, \ldots, 0)$, $I = I(X) \subset k[x_1, \ldots, x_n]$.

Any $f \in k[x_1, \ldots, x_n]$

$$f = f^{(0)} + f^{(1)} + f^{(2)} + \ldots$$

$I^{(1)} = \{ f^{(1)} : f \in I \}$ is a vector subspace of $k[x_1, \ldots, x_n]^{(1)}$.
Let $X \subset \mathbb{A}^n$, $p \in X$,

WLOG $p = (0, \ldots, 0)$, $I = I(X) \subset k[x_1, \ldots, x_n]$.

Any $f \in k[x_1, \ldots, x_n]$

$$f = f^{(0)} + f^{(1)} + f^{(2)} + \ldots$$

$I^{(1)} = \{f^{(1)} : f \in I\}$ is a vector subspace of $k[x_1, \ldots, x_n]^{(1)}$

The Zariski tangent space

$$T_pX = Z(I^{(1)}) \subset \mathbb{A}^n$$
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]/I^{(1)} \times Z(I^{(1)}) \rightarrow k \]
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)} / I^{(1)} \times \mathbb{Z}(I^{(1)}) \to k \]

\[(f, q) \mapsto f(q)\]
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times Z(I^{(1)}) \rightarrow k \]

\[(f, q) \mapsto f(q) \]

is well-defined
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times Z(I^{(1)}) \to k \]

\[(f, q) \mapsto f(q)\]

is well-defined and nondegenerate.
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times Z(I^{(1)}) \rightarrow k \]

\((f, q) \mapsto f(q)\)

is well-defined and nondegenerate.

\[T_pX = \left(k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \right)^\vee \]
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times Z(I^{(1)}) \to k \]

\[(f, q) \mapsto f(q) \]

is well-defined and nondegenerate.

\[T_pX = \left(k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \right)^\vee \]

(ii) By Taylor:

\[f^{(1)} = \sum_j \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j) \]
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times \mathbb{Z}(I^{(1)}) \to k \]

\[(f, q) \mapsto f(q) \]

is well-defined and nondegenerate.

\[T_pX = \left(k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \right)^\vee \]

(ii) By Taylor:

\[f^{(1)} = \sum_j \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j) \]

\[T_pX = \left\{ \sum_j \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j) = 0, \ f \in I(X) \right\} \subset \mathbb{A}^n \]
How to think about the tangent space

(i) The pairing

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \times Z(I^{(1)}) \rightarrow k \]

\[(f, q) \mapsto f(q) \]

is well-defined and nondegenerate.

\[T_pX = \left(k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \right)^\vee \]

(ii) By Taylor:

\[f^{(1)} = \sum_j \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j) \]

\[T_pX = \left\{ \sum_j \frac{\partial f}{\partial x_j}(p) \cdot (x_j - p_j) = 0, \ f \in I(X) \right\} \subset \mathbb{A}^n \]
Intrinsic nature of Zariski tangent space

Lemma

Let $X \subset \mathbb{A}^n$, $p \in X$. Let

$$\mathfrak{m} \subset \mathcal{O}_{X,p} \text{ maximal ideal}, \; \mathfrak{m} = \{\phi : \phi(p) = 0\}.$$
Intrinsic nature of Zariski tangent space

Lemma

Let $X \subset \mathbb{A}^n$, $p \in X$. Let

$$m \subset \mathcal{O}_{X,p} \text{ maximal ideal, } m = \{\phi : \phi(p) = 0\}.$$

Then

$$k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \simeq m/m^2$$
Lemma

Let $X \subset \mathbb{A}^n$, $p \in X$. Let

$$m \subset \mathcal{O}_{X,p} \text{ maximal ideal, } m = \{\phi : \phi(p) = 0\}.$$

Then

$$k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \simeq m/m^2 \implies T_pX \simeq (m/m^2)^\vee.$$
Lemma

Let \(X \subset \mathbb{A}^n, \ p \in X \). Let

\[m \subset \mathcal{O}_{X,p} \text{ maximal ideal, } m = \{ \phi : \phi(p) = 0 \}. \]

Then

\[k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \cong m/m^2 \implies T_pX \cong (m/m^2)^\vee. \]

Remarks:

\(T_pX \) is independent of choice of coordinates
Intrinsic nature of Zariski tangent space

Lemma

Let $X \subset \mathbb{A}^n$, $p \in X$. Let

$$m \subset \mathcal{O}_{X,p} \text{ maximal ideal, } m = \{\phi : \phi(p) = 0\}.$$

Then

$$k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \simeq m/m^2 \implies T_pX \simeq (m/m^2)^\vee.$$

Remarks:

- T_pX is independent of choice of coordinates

- for any variety X, $T_pX = T_pU$ for U affine open near p.

Intrinsic nature of Zariski tangent space

Lemma

Let $X \subset \mathbb{A}^n$, $p \in X$. Let

$$m \subset \mathcal{O}_{X,p} \text{ maximal ideal, } m = \{ \phi : \phi(p) = 0 \}.$$

Then

$$k[x_1, \ldots, x_n]^{(1)}/I^{(1)} \cong m/m^2 \implies T_pX \cong (m/m^2)^\vee.$$

Remarks:

- T_pX is independent of choice of coordinates

- for any variety X, $T_pX = T_pU$ for U affine open near p.