Last time

1 – 1 correspondence:

\{'\text{algebraic sets in } \mathbb{A}^n\}' \iff \{'\text{radical ideals in } R = k[x_1, \ldots, x_n]\}'
Last time

1 – 1 correspondence:

\[
\{\text{algebraic sets in } \mathbb{A}^n\} \iff \{\text{radical ideals in } R = k[x_1, \ldots, x_n]\}
\]

- ideals \(i \subset R \) give \(Z(i) \subset \mathbb{A}^n \)

Theorem (Strong Nullstellensatz)

\[
I \bigcap \mathbb{A}^n = \sqrt{i}
\]

Proof uses the weak Nullstellensatz

\[
Z(a) = \emptyset \iff a = (1)
\]
Last time

1 − 1 correspondence:

\{\text{algebraic sets in } \mathbb{A}^n\} \iff \{\text{radical ideals in } R = k[x_1, \ldots, x_n]\}

- ideals \(i \subset R\) give \(Z(i) \subset \mathbb{A}^n\)
- algebraic sets \(X \subset \mathbb{A}^n\) give \(I(X) \subset R\)

Theorem (Strong Nullstellensatz)

\(I_Z(i) = \sqrt{i}\)

Proof uses the weak Nullstellensatz

\(Z(a) = \emptyset \iff a = (1)\).
Last time

1 – 1 correspondence:

\{\text{algebraic sets in } \mathbb{A}^n\} \iff \{\text{radical ideals in } R = k[x_1, \ldots, x_n]\}

- ideals \(i \subset R \) give \(Z(i) \subset \mathbb{A}^n \)
- algebraic sets \(X \subset \mathbb{A}^n \) give \(I(X) \subset R \)
- \(ZI(X) = X \)
Last time

1 - 1 correspondence:

\{\text{algebraic sets in } \mathbb{A}^n\} \iff \{\text{radical ideals in } R = k[x_1, \ldots, x_n]\}

- ideals \(i \subseteq R \) give \(Z(i) \subseteq \mathbb{A}^n \)
- algebraic sets \(X \subseteq \mathbb{A}^n \) give \(I(X) \subseteq R \)
- \(ZI(X) = X \)

Theorem (Strong Nullstellensatz)

\[IZ(i) = \sqrt{i} \]
Last time

1 − 1 correspondence:

\{\text{algebraic sets in } \mathbb{A}^n\} \iff \{\text{radical ideals in } R = k[x_1, \ldots, x_n]\}

- ideals \(i \subset R\) give \(Z(i) \subset \mathbb{A}^n\)
- algebraic sets \(X \subset \mathbb{A}^n\) give \(I(X) \subset R\)
- \(ZI(X) = X\)

Theorem (Strong Nullstellensatz)

\[IZ(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[Z(a) = \emptyset \iff a = (1). \]
Last time

1 − 1 correspondence:

{algebraic sets in \(\mathbb{A}^n \)} ⇐⇒ \{radical ideals in \(R = k[x_1, ..., x_n] \)\}

- ideals \(i \subset R \) give \(Z(i) \subset \mathbb{A}^n \)
- algebraic sets \(X \subset \mathbb{A}^n \) give \(I(X) \subset R \)
- \(Z(I(X)) = X \)

Theorem (Strong Nullstellensatz)

\[IZ(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[Z(a) = \emptyset \iff a = (1). \]
Figure: David Hilbert
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.

- Let $f \in I_Z(i)$. We show $f^n \in i$.

Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.

- Let $f \in IZ(i)$. We show $f^n \in i$.

- Let $j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]$. Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then $p \in Z(i)$, $tf(p) - 1 = 0 \Rightarrow f(p) \neq 0$ contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.

- Let $f \in IZ(i)$. We show $f^n \in i$.

- Let $j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]$.

- Note that $Z(j) = \emptyset$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq IZ(i)$.

- Let $f \in IZ(i)$. We show $f^n \in i$.

- Let $j = i + (tf - 1) \subseteq k[x_1, \ldots, x_n, t]$.

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then
 $$p \in Z(i), \quad tf(p) - 1 = 0$$
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.

- Let $f \in I_Z(i)$. We show $f^n \in i$.

- Let

 \[j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]. \]

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

 \[p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0 \]

 contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq IZ(i)$.

- Let $f \in IZ(i)$. We show $f^n \in i$.

- Let

$$j = i + (tf - 1) \subseteq k[x_1, \ldots, x_n, t].$$

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

$$p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0$$

contradiction.
Proof

\[j = (1): \]

\[f_i \in \mathbb{R}. \]

\[t_N \text{ the highest power of } t \text{ occurring in the } g_i. \]
Proof

Hence \(j = (1) \):

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots
\]

\[
+ f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with \(f_i \in i \).
Proof

▶ Hence \(j = (1) \):

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots \\
+ f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with \(f_i \in i \).

▶ Let \(t^N \) the highest power of \(t \) occurring in the \(g_i \).
Proof

- Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots$$

$$+ f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.

- Let t^N the highest power of t occurring in the g_i.

$$f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots$$

$$+ f_m \cdot G_m(x_1, \ldots, x_n, ft).$$
Proof

- Hence \(j = (1) \):

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots \\
+ f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with \(f_i \in i \).

- Let \(t^N \) the highest power of \(t \) occurring in the \(g_i \).

\[
f^N = (ft - 1) \cdot G_0(x_1, \ldots, x_n, ft) + f_1 \cdot G_1(x_1, \ldots, x_n, ft) + \ldots \\
+ f_m \cdot G_m(x_1, \ldots, x_n, ft).
\]
Proof

In $k[x_1, \ldots, x_n, t]/(ft - 1)$ we have

$$f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1).$$
Proof

In \(k[x_1, \ldots, x_n, t]/(ft - 1) \) we have

\[
f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1).
\]

This is an identity in \(k[x_1, \ldots, x_n] \subset k[x_1, \ldots, x_n, t]/(ft - 1) \).

\[
f_i \in i \implies f^N \in i.
\]
Proof

- In $k[x_1, \ldots, x_n, t]/(ft - 1)$ we have
 \[f^N = f_1 \cdot G_1(x_1, \ldots, x_n, 1) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n, 1).\]

- This is an identity in $k[x_1, \ldots, x_n] \subset k[x_1, \ldots, x_n, t]/(ft - 1)$.
 \[f_i \in i \implies f^N \in i.\]
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: $X = Z(xy) \subset \mathbb{A}^2$ is the union of the two coordinate axes:
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: $X = Z(xy) \subset \mathbb{A}^2$ is the union of the two coordinate axes:

$$X = X_1 \cup X_2$$

where $X_1 = Z(y), X_2 = Z(x)$.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: \(X = Z(xy) \subset \mathbb{A}^2 \) is the union of the two coordinate axes:

\[
X = X_1 \cup X_2
\]

where \(X_1 = Z(y) \), \(X_2 = Z(x) \).

The set \(X \) is said to be reducible, and \(X_1 \) and \(X_2 \) are its irreducible components.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: $X = Z(xy) \subset \mathbb{A}^2$ is the union of the two coordinate axes:

$$X = X_1 \cup X_2$$

where $X_1 = Z(y)$, $X_2 = Z(x)$.

The set X is said to be reducible, and X_1 and X_2 are its irreducible components.

Definition
A topological space X is reducible if $X = X_1 \cup X_2$ for two proper closed subsets X_1 and X_2.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set is reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology.
Irreducibility

Remark: If \(X_1 \) and \(X_2 \) are required disjoint, \(X \) is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \(\mathbb{A}^1 \) is irreducible in the Zariski topology (cofinite topology).

When \(k = \mathbb{C} \), \(\mathbb{A}^1 \) is reducible in the usual topology. Set

\[
X_1 = \{ z \in \mathbb{C} : |z| \geq 1 \}, \quad X_2 = \{ z \in \mathbb{C} : |z| \leq 1 \}.
\]
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. Set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \quad X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

However, \mathbb{A}^1 is connected.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. Set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \quad X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

However, \mathbb{A}^1 is connected.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.

Definition

An irreducible affine algebraic set is called an affine variety.
Irreducibility

Lemma
Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.

Definition

An irreducible affine algebraic set is called an affine variety.
Affine algebraic sets are in 1 -- 1 correspondence with radical ideals.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals.

How about affine varieties?
Prime ideals

Affine algebraic sets are in $1-1$ correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set \(X \subset \mathbb{A}^n \) is irreducible \(\iff \) \(I(X) \) is a prime ideal of \(k[X_1, \ldots, X_n] \)

Proof: We prove \(X \) is reducible \(\iff \) \(I(X) \) is not prime.
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible \iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible \iff $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.
Prime ideals

Affine algebraic sets are in $1-1$ correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$.
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \notin I(X)$.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \not\in I(X)$. Thus $I(X)$ is not prime.
Prime ideals

Affine algebraic sets are in $1 - 1$ correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible \iff $I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible \iff $I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \notin I(X)$. Thus $I(X)$ is not prime.
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.
Example: The hypersurface \(y^2 - x^3 = 0 \) in \(\mathbb{A}^2 \) is irreducible.

Example: The ideal \(\alpha = (x^2y - y^2) \) is not prime.
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \notin \mathfrak{a}$ and $x^2 - y \notin \mathfrak{a}$.

We have $Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2)$.

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.

Example: What are the irreducible closed subsets of \mathbb{A}^2?

What are the prime ideals of $k[X, Y]$?
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \not\in \mathfrak{a}$ and $x^2 - y \not\in \mathfrak{a}$. We have

$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The ideal $\alpha = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \alpha$$

but $y \notin \alpha$ and $x^2 - y \notin \alpha$. We have

$$Z(\alpha) = Z(y) \cup Z(y - x^2).$$

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The ideal $\mathfrak{a} = (x^2 y - y^2)$ is not prime. In fact,
$$y \cdot (x^2 - y) \in \mathfrak{a}$$
but $y \not\in \mathfrak{a}$ and $x^2 - y \not\in \mathfrak{a}$. We have
$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.

Example: What are the irreducible closed subsets of \mathbb{A}^2?
Example: The hypersurface $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The ideal $\mathfrak{a} = (x^2y - y^2)$ is not prime. In fact,

$$y \cdot (x^2 - y) \in \mathfrak{a}$$

but $y \not\in \mathfrak{a}$ and $x^2 - y \not\in \mathfrak{a}$. We have

$$Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2).$$

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.

Example: What are the irreducible closed subsets of \mathbb{A}^2? What are the prime ideals of $k[X, Y]$?
Example: The hypersurface \(y^2 - x^3 = 0 \) in \(\mathbb{A}^2 \) is irreducible.

Example: The ideal \(\mathfrak{a} = (x^2y - y^2) \) is not prime. In fact,

\[y \cdot (x^2 - y) \in \mathfrak{a} \]

but \(y \not\in \mathfrak{a} \) and \(x^2 - y \not\in \mathfrak{a} \). We have

\[Z(\mathfrak{a}) = Z(y) \cup Z(y - x^2). \]

Example: The only proper irreducible closed subsets of \(\mathbb{A}^1 \) are single points.

Example: What are the irreducible closed subsets of \(\mathbb{A}^2 \)? What are the prime ideals of \(k[X, Y] \)?
Let $\mathfrak{p} \subset k[X, Y]$ be prime, $\mathfrak{p} \neq (0), (1)$.
Let \(p \subset k[X, Y] \) be prime, \(p \neq (0), (1) \).

We claim

- \(p \) is principal generated by one irreducible polynomial \(f \) or
- \(p \) is maximal, \(p = (X - a, Y - b) \) for some \(a, b \in k \).
Let \(\mathfrak{p} \subset k[X, Y] \) be prime, \(\mathfrak{p} \neq (0), (1) \).

We claim
- \(\mathfrak{p} \) is principal generated by one irreducible polynomial \(f \) or
- \(\mathfrak{p} \) is maximal, \(\mathfrak{p} = (X - a, Y - b) \) for some \(a, b \in k \).

Geometrically, the proper subvarieties of \(\mathbb{A}^2 \) are points and irreducible affine curves.
Let \(p \subset k[X, Y] \) be prime, \(p \neq (0), (1) \).

We claim

- \(p \) is principal generated by one irreducible polynomial \(f \) or
- \(p \) is maximal, \(p = (X - a, Y - b) \) for some \(a, b \in k \).

Geometrically, the proper subvarieties of \(\mathbb{A}^2 \) are points and irreducible affine curves.
Pick \(F \in p \). Factorize \(F \) into product of irreducibles.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irred factor of G.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irreducible factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now, $(f, g) \subset \mathfrak{p} = \mathbb{Z}(\mathfrak{p}) = \mathbb{Z}(f, g)$.

Two distinct irreducible polynomials f and g in $\mathbb{K}[X, Y]$ have only finitely many common roots.

Since $\mathbb{Z}(\mathfrak{p})$ is irreducible, $\mathbb{Z}(\mathfrak{p})$ is a point (a, b).

Thus $\mathfrak{p} = (X - a, Y - b)$.

Pick $F \in p$. Factorize F into product of irreducibles. Thus p contains one irreducible polynomial f.

If $p \neq (f)$, pick an element $G \in p \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in p$.

Now,

$$(f, g) \subset p$$
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irreducible factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irreducible factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irreducible factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.

Since $Z(\mathfrak{p})$ is irreducible, $Z(\mathfrak{p})$ is a point (a, b).
Pick $F \in \mathfrak{p}$. Factorize F into product of irreducibles. Thus \mathfrak{p} contains one irreducible polynomial f.

If $\mathfrak{p} \neq (f)$, pick an element $G \in \mathfrak{p} \setminus (f)$.

Pick an irred factor of G. Then there is an irreducible polynomial $g \neq f$ with $g \in \mathfrak{p}$.

Now,

$$(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).$$

Two distinct irreducible polynomials f and g in $k[X, Y]$ have only finitely many common roots.

Since $Z(\mathfrak{p})$ is irreducible, $Z(\mathfrak{p})$ is a point (a, b). Thus $\mathfrak{p} = (X - a, Y - b)$.
Pick \(F \in \mathfrak{p} \). Factorize \(F \) into product of irreducibles. Thus \(\mathfrak{p} \) contains one irreducible polynomial \(f \).

If \(\mathfrak{p} \neq (f) \), pick an element \(G \in \mathfrak{p} \setminus (f) \).

Pick an irred factor of \(G \). Then there is an irreducible polynomial \(g \neq f \) with \(g \in \mathfrak{p} \).

Now,

\[
(f, g) \subset \mathfrak{p} \implies Z(\mathfrak{p}) \subset Z(f, g).
\]

Two distinct irreducible polynomials \(f \) and \(g \) in \(k[X, Y] \) have only finitely many common roots.

Since \(Z(\mathfrak{p}) \) is irreducible, \(Z(\mathfrak{p}) \) is a point \((a, b)\). Thus \(\mathfrak{p} = (X - a, Y - b) \).
Lemma

If \(f : \mathbb{A}^n \rightarrow \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.
Lemma

If $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map and X is irreducible in \mathbb{A}^n, then $f(X)$ is also irreducible.

Proof:

- Write $f(X) = Z_1 \cup Z_2$ where Z_1, Z_2 are proper closed subsets.
Lemma
If \(f : \mathbb{A}^n \rightarrow \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with

\[
Z_i = Y_i \cap f(X)
\]
Lemma
If $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map and X is irreducible in \mathbb{A}^n, then $f(X)$ is also irreducible.

Proof:

- Write $f(X) = Z_1 \cup Z_2$ where Z_1, Z_2 are proper closed subsets.
- Find algebraic subsets Y_i of \mathbb{A}^m with

$$Z_i = Y_i \cap f(X)$$

- Since f is polynomial, $f^{-1}(Y_i)$ is algebraic in \mathbb{A}^n.
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

1. Write \(f(X) = \mathcal{Z}_1 \cup \mathcal{Z}_2 \) where \(\mathcal{Z}_1, \mathcal{Z}_2 \) are proper closed subsets.
2. Find algebraic subsets \(\mathcal{Y}_i \) of \(\mathbb{A}^m \) with

\[
\mathcal{Z}_i = \mathcal{Y}_i \cap f(X)
\]

3. Since \(f \) is polynomial, \(f^{-1}(\mathcal{Y}_i) \) is algebraic in \(\mathbb{A}^n \).

4. \(X_i = f^{-1}(\mathcal{Y}_i) \cap X \)

is closed in \(X \).
Lemma

If \(f : \mathbb{A}^n \rightarrow \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

- Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
- Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
- Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
- \[
 X_i = f^{-1}(Y_i) \cap X
 \]
 is closed in \(X \).
- \[
 X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X.
 \]
Lemma

If \(f : \mathbb{A}^n \rightarrow \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

1. Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.
2. Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with
 \[
 Z_i = Y_i \cap f(X)
 \]
3. Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).
4.
 \[
 X_i = f^{-1}(Y_i) \cap X
 \]
 is closed in \(X \).
5.

 \[
 X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X.
 \]

This means

\[
X \subset f^{-1}(Y_i) \implies f(X) \subset Y_i \implies f(X) = Z_i.
\]
Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof:

\(\triangleright \) Write \(f(X) = Z_1 \cup Z_2 \) where \(Z_1, Z_2 \) are proper closed subsets.

\(\triangleright \) Find algebraic subsets \(Y_i \) of \(\mathbb{A}^m \) with

\[Z_i = Y_i \cap f(X) \]

\(\triangleright \) Since \(f \) is polynomial, \(f^{-1}(Y_i) \) is algebraic in \(\mathbb{A}^n \).

\(\triangleright \)

\[X_i = f^{-1}(Y_i) \cap X \]

is closed in \(X \).

\(\triangleright \)

\[X = X_1 \cup X_2 \implies X_1 = X \text{ or } X_2 = X. \]

This means

\[X \subset f^{-1}(Y_i) \implies f(X) \subset Y_i \implies f(X) = Z_i. \]
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$
Example: Let C be the curve given parametrically by
\[(t^2, t^4, t^5), t \in k.\]

We claim C is **irreducible**.

Proof: This curve is the image of the polynomial map
\[f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).\]

By the lemma, C is **irreducible**.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \rightarrow \mathbb{A}^3, t \rightarrow (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \ldots$$

is stationary
Finiteness conditions

Definition
A topological space \(X \) is called Noetherian if every descending chain of closed subsets

\[
X \supset X_1 \supset X_2 \supset \ldots
\]

is stationary

Remark.

\(k[x_1, \ldots, x_n] \) is a Noetherian ring \(\implies \mathbb{A}^n \) is Noetherian topological space.
Finiteness conditions

Definition
A topological space X is called **Noetherian** if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \ldots$$

is stationary

Remark.
- $k[x_1, \ldots, x_n]$ is a Noetherian ring $\Rightarrow \mathbb{A}^n$ is Noetherian topological space.
- Any *subset* of Noetherian space is Noetherian.
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \cdots$$

is stationary.

Remark.
- $k[x_1, \ldots, x_n]$ is a Noetherian ring $\implies \mathbb{A}^n$ is Noetherian topological space.
- Any subset of Noetherian space is Noetherian.
- Affine algebraic sets are Noetherian.
Finiteness conditions

Definition
A topological space X is called Noetherian if every descending chain of closed subsets

$$X \supset X_1 \supset X_2 \supset \ldots$$

is stationary

Remark.

- $k[x_1, \ldots, x_n]$ is a Noetherian ring $\implies \mathbb{A}^n$ is Noetherian topological space.

- Any subset of Noetherian space is Noetherian.

- Affine algebraic sets are Noetherian.
Figure: Emmy Noether
Irreducible components

Theorem
Let X be a Noetherian topological space. Then X can be written as finite union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$.
Irreducible components

Theorem
Let \(X \) be a Noetherian topological space. Then \(X \) can be written as finite union of irreducible closed subsets

\[
X = \bigcup_{i} X_i,
\]

such that \(X_i \not\subset X_j \) for \(i \neq j \).

The decomposition is unique up to reordering of the \(X_i \)’s.

Remark
Algebraically, any radical ideal \(a \) is intersection of prime ideals

\[
a = \bigcap_{i} p_i.
\]

Analogy: any square-free integer is product of distinct primes.
Irreducible components

Theorem
Let X be a Noetherian topological space. Then X can be written as finite union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$.

The decomposition is unique up to reordering of the X_i’s.

Remark
Algebraically, any radical ideal α is intersection of prime ideals

$$\alpha = \bigcap_{i} \mathfrak{p}_i.$$
Irreducible components

Theorem
Let X be a Noetherian topological space. Then X can be written as finite union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \not\subset X_j$ for $i \neq j$.

The decomposition is unique up to reordering of the X_i’s.

Remark
Algebraically, any radical ideal a is intersection of prime ideals

$$a = \bigcap_{i} p_i.$$

Analogy: any square-free integer is product of distinct primes.
Irreducible components

Theorem
Let X be a Noetherian topological space. Then X can be written as finite union of irreducible closed subsets

$$X = \bigcup_{i} X_i,$$

such that $X_i \nsubseteq X_j$ for $i \neq j$.

The decomposition is unique up to reordering of the X_i’s.

Remark
Algebraically, any radical ideal α is intersection of prime ideals

$$\alpha = \bigcap_{i} p_i.$$

Analogy: any square-free integer is product of distinct primes.
Existence. Assume that \(X \) cannot be written as union of irreducible components.
Existence. Assume that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.

Continuing this construction, one arrives at an infinite chain $X \supseteq X_1 \supseteq X_2 \supseteq \ldots \supseteq X_n \supseteq \ldots$, contradicting X is Noetherian.
Existence. Assume that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.

- The Theorem must be false for one of these subsets, say X_1.
Existence. Assume that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.

- The Theorem must be false for one of these subsets, say X_1.

- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.

Continuing this construction, one arrives at an infinite chain $X \supseteq X_1 \supseteq X_2 \supseteq ... \supseteq X_n \supseteq ...$ of closed subsets, contradicting X is Noetherian.
Existence. Assume that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.
- The Theorem must be false for one of these subsets, say X_1.
- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.
- Continuing this construction, one arrives at an infinite chain

$$X \supsetneq X_1 \supsetneq X_2 \ldots \supsetneq X_n \supsetneq \ldots$$

of closed subsets, contradicting X is Noetherian.
Existence. Assume that X cannot be written as union of irreducible components.

- In particular, X is reducible $X = X_1 \cup X'_1$.

- The Theorem must be false for one of these subsets, say X_1.

- Repeat: X_1 is reducible $X_1 = X_2 \cup X'_2$.

- Continuing this construction, one arrives at an infinite chain

 $X \supsetneq X_1 \supsetneq X_2 \ldots \supsetneq X_n \supsetneq \ldots$

 of closed subsets, contradicting X is Noetherian.
Uniqueness.

\[X = \bigcup_{i} X_i = \bigcup_{j} Y_j. \]
Uniqueness.

\[X = \bigcup X_i = \bigcup Y_j. \]

\[X_i = \bigcup (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]
Uniqueness.

\[X = \bigcup_i X_i = \bigcup_j Y_j. \]

\[X_i = \bigcup_i (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]

\[\text{Similarly, } Y_j \subset X_i'. \]
Uniqueness.

\[X = \bigcup X_i = \bigcup Y_j. \]

\[X_i = \bigcup (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]

\[\text{Similarly, } Y_j \subset X_i'. \]

\[\text{Thus } i = i' \text{ and } X_i = Y_j. \]
Uniqueness.

\[X = \bigcup X_i = \bigcup Y_j. \]

\[X_i = \bigcup_{i} (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]

\[\text{Similarly, } Y_j \subset X_i'. \]

\[\text{Thus } i = i' \text{ and } X_i = Y_j. \]

\[\text{The sets } X_i \text{'s are a permutation of the } Y_j \text{s.} \]
Uniqueness.

\[X = \bigcup_{i} X_i = \bigcup_{j} Y_j. \]

\[X_i = \bigcup_{i} (Y_j \cap X_i) \implies X_i \subset Y_j \text{ for some } j. \]

\[\text{Similarly, } Y_j \subset X_i'. \]

\[\text{Thus } i = i' \text{ and } X_i = Y_j. \]

\[\text{The sets } X_i' \text{’s are a permutation of the } Y_j \text{’s.} \]
“Everyone knows what a curve is, until he has studied enough mathematics to become confused …”
“Everyone knows what a curve is, until he has studied enough mathematics to become confused ...”
Definition
An irreducible Noetherian topological space X has dimension n if

- there is a descending chain of closed irreducible subsets $X = X_0 \supseteq X_1 \supseteq \ldots \supseteq X_n \neq \emptyset$,
- and any other chain has length at most or equal to n.

In this definition, we should think of the X_i’s as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible, $\dim X = \sup$ of the dimensions of its irreducible components.
Definition
An irreducible Noetherian topological space X has dimension n if

- there is a descending chain of closed irreducible subsets

\[X = X_0 \supseteq X_1 \supseteq \ldots \supseteq X_n \neq \emptyset, \]

In this definition, we should think of the X_i's as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible, $\dim X = \sup$ of the dimensions of its irreducible components.
Definition
An irreducible Noetherian topological space X has dimension n if

- there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

- and any other chain has length at most or equal to n.

Remark
If X is any Noetherian topological space, not irreducible, $\dim X = \sup$ of the dimensions of its irreducible components.
Definition
An irreducible Noetherian topological space X has dimension n if
- there is a descending chain of closed irreducible subsets
 \[X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset, \]
- and any other chain has length at most or equal to n.

In this definition, we should think of the X_i’s as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible, $\dim X = \sup$ of the dimensions of its irreducible components.
Definition
An irreducible Noetherian topological space X has dimension n if
▶ there is a descending chain of closed irreducible subsets

$$X = X_0 ⊋ X_1 ⊋ \ldots ⊋ X_n \neq \emptyset,$$

▶ and any other chain has length at most or equal to n.

In this definition, we should think of the X_i’s as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible,

$$\dim X = \text{sup of the dimensions of its irreducible components}.$$
Definition
An irreducible Noetherian topological space X has dimension n if

- there is a descending chain of closed irreducible subsets

$$X = X_0 \supsetneq X_1 \supsetneq \ldots \supsetneq X_n \neq \emptyset,$$

- and any other chain has length at most or equal to n.

In this definition, we should think of the X_i's as having dimension i.

Remark
If X is any Noetherian topological space, not irreducible,

$$\dim X = \sup \text{ of the dimensions of its irreducible components.}$$
Figure: Wolfgang Krull
Dimension

- The definition is hard to apply in practice
Dimension

- The definition is hard to apply in practice
- Easy: \(\dim \mathbb{A}^1 = 1 \).
Dimension

- The definition is hard to apply in practice
- Easy: \(\dim \mathbb{A}^1 = 1 \).
- Not so hard: \(\dim \mathbb{A}^2 = 2 \)
Dimension

- The definition is hard to apply in practice
- Easy: \(\dim \mathbb{A}^1 = 1 \).
- Not so hard: \(\dim \mathbb{A}^2 = 2 \)
 - The irreducible closed subsets are points and curves \(f = 0 \)
 - Maximal chain has length 2.
Dimension

- The definition is hard to apply in practice.
- Easy: \(\dim \mathbb{A}^1 = 1 \).
- Not so hard: \(\dim \mathbb{A}^2 = 2 \)
 - The irreducible closed subsets are points and curves \(f = 0 \).
 - Maximal chain has length 2.
- Using

\[
\mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.
\]
Dimension

- The definition is hard to apply in practice
- Easy: $\dim \mathbb{A}^1 = 1$.
- Not so hard: $\dim \mathbb{A}^2 = 2$
 - The irreducible closed subsets are points and curves $f = 0$
 - Maximal chain has length 2.
- Using
 \[
 \mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.
 \]
- Requires some work $\dim \mathbb{A}^n = n$
Dimension

- The definition is hard to apply in practice
- Easy: $\dim \mathbb{A}^1 = 1$
- Not so hard: $\dim \mathbb{A}^2 = 2$
 - The irreducible closed subsets are points and curves $f = 0$
 - Maximal chain has length 2.
- Using
 \[
 \mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.
 \]
- Requires some work $\dim \mathbb{A}^n = n$
- Better definition later.
Dimension

- The definition is hard to apply in practice
- Easy: $\dim \mathbb{A}^1 = 1$.
- Not so hard: $\dim \mathbb{A}^2 = 2$
 - The irreducible closed subsets are points and curves $f = 0$
 - Maximal chain has length 2.
- Using

 $$\mathbb{A}^0 \subset \mathbb{A}^1 \subset \mathbb{A}^2 \subset \ldots \subset \mathbb{A}^n \implies \dim \mathbb{A}^n \geq n.$$
- Requires some work $\dim \mathbb{A}^n = n$
- Better definition later.
- Terminology: curve, surface, threefold, etc.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

▶ Assume $\dim C \geq 2$.

▶ $C \supseteq X_1 \supseteq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

▶ $\mathbb{A}^1 \supseteq f^{-1}(X_1) \supseteq f^{-1}(X_2) \neq \emptyset$.

▶ $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.

▶ Thus X_i is one point.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

\triangleright Assume $\dim C \geq 2$.

\triangleright

$$C \supsetneq X_1 \supsetneq X_2 \neq \emptyset,$$

where X_1, X_2 closed irreducible.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \rightarrow C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$,
 where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supsetneq f^{-1}(X_1) \supsetneq f^{-1}(X_2) \neq \emptyset$.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume dim $C \geq 2$.

- $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supsetneq f^{-1}(X_1) \supsetneq f^{-1}(X_2) \neq \emptyset$.

- $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.

Proof: Let $f: \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

 - $C \supsetneq X_1 \supsetneq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

 - $\mathbb{A}^1 \supsetneq f^{-1}(X_1) \supsetneq f^{-1}(X_2) \neq \emptyset$.

- $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.

- Thus X_i is one point.
Example: Let C be given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$

We claim C is has dimension 1.

Proof: Let $f : \mathbb{A}^1 \to C$ be the polynomial map (t^2, t^4, t^5).

- Assume $\dim C \geq 2$.

- $C \supseteq X_1 \supseteq X_2 \neq \emptyset$, where X_1, X_2 closed irreducible.

- $\mathbb{A}^1 \supseteq f^{-1}(X_1) \supseteq f^{-1}(X_2) \neq \emptyset$.

- $f^{-1}(X_i)$ is a proper closed subset of \mathbb{A}^1, hence finite.

- Thus X_i is one point.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

▶ This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are \emptyset, $\{a\}$, X. X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.

Remark: This is true if X is an affine algebraic set in the Zariski topology.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.

X is irreducible of dimension 1,
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

- This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.

- X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.
Remark: Intuitively, if U is dense in an irreducible Noetherian topological space X then

$$\dim U = \dim X.$$

▶ This is false.

Set $X = \{a, b\}$. Give X the topology whose closed sets are $\emptyset, \{a\}, X$.

▶ X is irreducible of dimension 1, while $U = \{b\}$ is a dense open set of dimension 0.

Remark: This is true if X is an affine algebraic set in the Zariski topology.
II. Functions and morphisms of algebraic sets
Coordinate rings

- We wish to define regular functions on affine varieties.
Coordinate rings

▶ We wish to define regular functions on affine varieties
 ▶ holomorphic functions, differentiable functions etc.

\[\mathcal{A}(X) = \mathbb{K}[x_1, \ldots, x_n]/I(X) = \text{integral domain} \]

▶ Any \(f \in \mathcal{A}(X) \) gives a polynomial function \(f : X \to \mathbb{K} \)

▶ This is independent of choices \(f_1, f_2 \) in \(\mathcal{A}(X) = \Rightarrow f_1 - f_2 \in I(X) = \Rightarrow f_1|_X = f_2|_X. \)
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

\[A(X) = k[x_1, \ldots, x_n]/I(X) \]
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

$$A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}$$
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

 $$A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}$$

- Any $f \in A(X)$ gives a polynomial function

 $$f : X \rightarrow k$$
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let $X \subset \mathbb{A}^n$ affine variety
- Coordinate ring

 $$A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}$$

- Any $f \in A(X)$ gives a polynomial function

 $$f : X \rightarrow k$$

- This is independent of choices f_1, f_2
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let \(X \subset \mathbb{A}^n \) affine variety
- Coordinate ring

\[
A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}
\]

- Any \(f \in A(X) \) gives a polynomial function

\[
f : X \to k
\]

- This is independent of choices \(f_1, f_2 \)

\[
f_1 = f_2 \text{ in } A(X) \implies f_1 - f_2 \in I(X) \implies f_1|_X = f_2|_X.
\]
Coordinate rings

- We wish to define regular functions on affine varieties
 - holomorphic functions, differentiable functions etc.
- Let \(X \subset \mathbb{A}^n \) affine variety
- Coordinate ring
 \[
 A(X) = k[x_1, \ldots, x_n]/I(X) = \text{integral domain}
 \]
- Any \(f \in A(X) \) gives a polynomial function
 \[
 f : X \to k
 \]
- This is independent of choices \(f_1, f_2 \)
 \[
 f_1 = f_2 \text{ in } A(X) \implies f_1 - f_2 \in I(X) \implies f_1|_X = f_2|_X.
 \]
$A(X)$ is integral domain
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- Each rational function can be represented as

\[\phi = \frac{f}{g} \]
\[A(X) \text{ is integral domain} \]

\[\text{The quotient field } K(X) \text{ is called the field of rational functions on } X. \]

\[\text{Each rational function can be represented as } \phi = \frac{f}{g} \]

\[\text{If } \phi = \frac{f}{g} = \frac{f'}{g'} \text{ then } \]

\[fg' - f'g \in I(X) \]
A(\(X\)) is integral domain

The quotient field \(K(X)\) is called the field of rational functions on \(X\).

Each rational function can be represented as

\[
\phi = \frac{f}{g}
\]

If \(\phi = \frac{f}{g} = \frac{f'}{g'}\) then

\[
fg' - f'g \in I(X)
\]

Rational functions are partially defined over open subsets
- $A(X)$ is integral domain
- The quotient field $K(X)$ is called the field of rational functions on X.
- Each rational function can be represented as
 \[\phi = \frac{f}{g} \]
- If $\phi = \frac{f}{g} = \frac{f'}{g'}$ then
 \[fg' - f'g \in I(X) \]
- Rational functions are partially defined over open subsets

Example: If $X = \mathbb{A}^n$, then

\[A(X) = k[x_1, \ldots, x_n], \ K(X) = k(x_1, \ldots, x_n). \]
A(\mathcal{X}) \text{ is integral domain}

The quotient field \(K(\mathcal{X}) \) is called the field of rational functions on \(\mathcal{X} \).

Each rational function can be represented as

\[\phi = \frac{f}{g} \]

If \(\phi = \frac{f}{g} = \frac{f'}{g'} \) then

\[fg' - f'g \in I(\mathcal{X}) \]

Rational functions are partially defined over open subsets

Example: If \(\mathcal{X} = \mathbb{A}^n \), then

\[A(\mathcal{X}) = k[x_1, \ldots, x_n], \quad K(\mathcal{X}) = k(x_1, \ldots, x_n). \]
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

\[
\text{Local ring } O_{X, p} = \left\{ f, g : g(p) \neq 0, f, g \in \mathcal{A}(X) \right\} \subset K(X).
\]

These are the regular functions at p.

\[
\text{Regular functions on } U : O_X(U) = \bigcap_{p \in U} O_{X, p} \subset K(X).
\]
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

 $$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

 These are the regular functions at p.
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

These are the regular functions at p.

- Regular functions on U:

$$\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).$$
Regular functions on open subsets

Let $U \subset X$ be open. We define regular functions on U.

Strategy: A regular function on U must be regular at each $p \in U$.

- Let $p \in X$. The local ring

\[
\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).
\]

These are the regular functions at p.

- Regular functions on U:

\[
\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).
\]
Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!

Example: Let $X = \{xw - yz = 0\} \subset A^4$. Let $U = \{y \neq 0 \text{ or } w \neq 0\}$.

The function $\phi = \begin{cases} x & \text{for } y \neq 0 \\ z & \text{for } w \neq 0 \end{cases}$ is well-defined and regular on U. It is not a global quotient of two polynomials.
- Beware: this is trickier than it looks!!!

- Not all regular functions on U can be expressed \textit{globally} as quotients of two polynomials!!!!!
Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed **globally** as quotients of two polynomials!!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$
Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$

The function

$$\phi = \begin{cases} \frac{x}{y} & \text{for } y \neq 0 \\ \frac{z}{w} & \text{for } w \neq 0 \end{cases}$$

is well-defined and regular on U.
Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed \textit{globally} as quotients of two polynomials!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let $U = \{y \neq 0 \text{ or } w \neq 0\}$.

The function

$$\phi = \begin{cases} \frac{x}{y} & \text{for } y \neq 0 \\ \frac{z}{w} & \text{for } w \neq 0 \end{cases}$$

is well-defined and regular on U. It is \textit{not} a \textit{global} quotient of two polynomials.
Beware: this is trickier than it looks!!!

Not all regular functions on U can be expressed globally as quotients of two polynomials!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$

The function

$$\phi = \begin{cases} \frac{x}{y} & \text{for } y \neq 0 \\ \frac{z}{w} & \text{for } w \neq 0 \end{cases}$$

is well-defined and regular on U. It is not a global quotient of two polynomials.