Math 203A

October 2, 2019
Last time

We studied:

- affine varieties $X \subset \mathbb{A}^n$
- irreducibility, dimension
- functions defined over them
- coordinate rings
- regular functions over open subsets
Last time

We studied:

- affine varieties \(X \subset \mathbb{A}^n \)
Last time

We studied:

- affine varieties $X \subset \mathbb{A}^n$
 - irreducibility, dimension
Last time

We studied:

- affine varieties \(X \subset \mathbb{A}^n \)
- irreducibility, dimension
- functions defined over them
Last time

We studied:

- **affine varieties** $X \subset \mathbb{A}^n$
 - irreducibility, dimension

- **functions** defined over them
 - coordinate rings
Last time

We studied:

- affine varieties $X \subset \mathbb{A}^n$
 - irreducibility, dimension
- functions defined over them
 - coordinate rings
- regular functions over open subsets
Last time

We studied:

- affine varieties $X \subset \mathbb{A}^n$
 - irreducibility, dimension
- functions defined over them
 - coordinate rings
- regular functions over open subsets
Regular functions on open subsets

\[U \subset X \text{ open.} \]
Regular functions on open subsets

$U \subset X$ open.

Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$
Regular functions on open subsets

$U \subset X$ open.

- Let $p \in X$. The local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).$$

These are the regular functions at p.
Regular functions on open subsets

\(U \subset X \) open.

- Let \(p \in X \). The local ring

\[
\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).
\]

These are the regular functions at \(p \).

- Regular functions on \(U \):

\[
\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).
\]
Regular functions on open subsets

\(U \subset X \) open.

- Let \(p \in X \). The local ring

\[
\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : g(p) \neq 0, f, g \in A(X) \right\} \subset K(X).
\]

These are the regular functions at \(p \).

- Regular functions on \(U \):

\[
\mathcal{O}_X(U) = \bigcap_{p \in U} \mathcal{O}_{X,p} \subset K(X).
\]
Not all regular functions on U can be expressed **globally** as quotients of two polynomials!!!!!
Not all regular functions on U can be expressed \textit{globally} as \textit{quotients} of two polynomials!!!!!

\textbf{Example:} Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$
Not all regular functions on U can be expressed \textit{globally} as quotients of two polynomials!!!!

\textbf{Example:} Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$

The function

$$\phi = \begin{cases}
\frac{x}{y} & \text{for } y \neq 0 \\
\frac{z}{w} & \text{for } w \neq 0
\end{cases}$$

is well-defined and regular on U.

Not all regular functions on U can be expressed **globally** as quotients of two polynomials!!!!!

Example: Let $X = \{xw - yz = 0\} \subset \mathbb{A}^4$. Let

$$U = \{y \neq 0 \text{ or } w \neq 0\}.$$

The function

$$\phi = \begin{cases}
\frac{x}{y} & \text{for } y \neq 0 \\
\frac{z}{w} & \text{for } w \neq 0
\end{cases}$$

is well-defined and regular on U.
Regularity is local

Lemma
Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE

\implies $\phi : U \to k$ is regular at the point $p \in U$
Regularity is local

Lemma
Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE

- $\phi : U \to k$ is regular at the point $p \in U$
- there is a neighborhood V of p in U,
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE

- $\phi : U \to k$ is regular at the point $p \in U$
- there is a neighborhood V of p in U, polynomials f, g with
Regularity is local

Lemma
Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE

- $\phi : U \to k$ is regular at the point $p \in U$
- there is a neighborhood V of p in U, polynomials f, g with
 - $g(q) \neq 0$
Regularity is local

Lemma

Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \to k$$

be a set theoretic map.

TFAE

- $\phi : U \to k$ is regular at the point $p \in U$
- there is a neighborhood V of p in U, polynomials f, g with
 - $g(q) \neq 0$
 - $\phi(q) = \frac{f(q)}{g(q)}$ for all $q \in V$.
Regularity is local

Lemma
Let $U \subset X \subset \mathbb{A}^n$ be open. Let

$$\phi : U \rightarrow k$$

be a set theoretic map.

TFAE

- $\phi : U \rightarrow k$ is regular at the point $p \in U$
- there is a neighborhood V of p in U, polynomials f, g with
 - $g(q) \neq 0$
 - $\phi(q) = \frac{f(q)}{g(q)}$ for all $q \in V$.
Remark: A well-defined function on U is regular if it can be written locally as a quotient.
Remark: A well-defined function on U is regular if it can be written locally as a quotient.

That is, there exists a cover $U = \bigcup_i U_i$ with

$$ \phi = \frac{f_i}{g_i} \text{ over } U_i,$$

g_i never vanishing on U_i.
Remark: A well-defined function on U is **regular** if it can be written locally as a quotient.

That is, there exists a cover $U = \bigcup_i U_i$ with

$$\phi = \frac{f_i}{g_i} \text{ over } U_i,$$

g_i never vanishing on U_i.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

 $$V = \{ q \in U : g(q) \neq 0 \}.$$
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

$$V = \{ q \in U : g(q) \neq 0 \}.$$

This is open in U and contains p.

Converse: to each $\phi = \frac{f}{g}$ in V, associate $f \frac{1}{g} \in K(X)$.
Proof:

► **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

$$V = \{ q \in U : g(q) \neq 0 \}.$$

This is open in U and contains p.

► **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.
Proof:

- **Forward:** We have $\phi = \frac{f}{g}$ with $g(p) \neq 0$. Let

$$V = \{ q \in U : g(q) \neq 0 \}.$$

This is open in U and contains p.

- **Converse:** to each $\phi = \frac{f}{g}$ in V, associate $\frac{f}{g} \in K(X)$.
Check: this is independent of choices.
- **Check:** this is independent of choices.

- Let \(\phi = \frac{f}{g} \), \(\phi = \frac{f'}{g'} \) in \(V \) and \(V' \).
Check: this is independent of choices.

Let \(\phi = \frac{f}{g}, \phi = \frac{f'}{g'} \) in \(V \) and \(V' \). Let \(W = V \cap V' \).
Check: this is independent of choices.

Let $\phi = \frac{f}{g}$, $\phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

$$\frac{f}{g} = \frac{f'}{g'}$$
on W
Check: this is independent of choices.

Let $\phi = \frac{f}{g}$, $\phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

$$\frac{f}{g} = \frac{f'}{g'} \text{ on } W \implies fg' - f'g = 0 \text{ on } W$$
Check: this is independent of choices.

Let \(\phi = \frac{f}{g} \), \(\phi = \frac{f'}{g'} \) in \(V \) and \(V' \). Let \(W = V \cap V' \). Then

\[
\frac{f}{g} = \frac{f'}{g'} \quad \text{on} \quad W \quad \implies \quad fg' - f'g = 0 \quad \text{on} \quad W
\]

\[
\implies \quad fg' - f'g = 0 \quad \text{on} \quad \overline{W} = X
\]
\begin{itemize}
 \item **Check:** this is independent of choices.
 \item Let \(\phi = f^g, \phi = f'^g \) in \(V \) and \(V' \). Let \(W = V \cap V' \). Then
 \[
 \frac{f}{g} = \frac{f'}{g'} \text{ on } W \implies fg' - f'g = 0 \text{ on } W
 \]
 \[
 \implies fg' - f'g = 0 \text{ on } W = X
 \]
 \[
 \implies fg' = f'g \text{ in } A(X)
 \]
\end{itemize}
- Check: this is independent of choices.

- Let $\phi = \frac{f}{g}$, $\phi = \frac{f'}{g'}$ in V and V'. Let $W = V \cap V'$. Then

 \[\frac{f}{g} = \frac{f'}{g'} \text{ on } W \implies fg' - f'g = 0 \text{ on } W \]

 \[\implies fg' - f'g = 0 \text{ on } \overline{W} = X \]

 \[\implies fg' = f'g \text{ in } A(X) \]

 \[\implies \frac{f}{g} = \frac{f'}{g'} \text{ in } K(X). \]
Distinguished open sets

Let \(f \in A(X) \), \(f \neq 0 \).
Distinguished open sets

Let \(f \in A(X), \ f \neq 0. \)

- The open sets

\[
X_f = X \setminus Z(f) = \{ p \in X : f(p) \neq 0 \}
\]

are called distinguished.
Distinguished open sets

Let \(f \in A(X), f \neq 0 \).

- The open sets

\[
X_f = X \setminus Z(f) = \{ p \in X : f(p) \neq 0 \}
\]

are called distinguished.

- \(X_f \) form a basis for the Zariski topology:

\[
X \setminus U = Z(\{f_i\}) \implies U = \bigcup_i X_{f_i}.
\]
Distinguished open sets

Let \(f \in A(X), \ f \neq 0. \)

- The open sets

\[
X_f = X \setminus Z(f) = \{ p \in X : f(p) \neq 0 \}
\]

are called distinguished.

- \(X_f \) form a basis for the Zariski topology:

\[
X \setminus U = Z(\{ f_i \}) \implies U = \bigcup_i X_{f_i}.
\]

Lemma

Regular functions on \(X_f \) are global quotients:

\[
O_{X_f} = A(X)_{f} = \{ g_f r, \ g \in A(X) \}.
\]
Distinguished open sets

Let $f \in A(X)$, $f \neq 0$.

- The open sets

$$X_f = X \setminus Z(f) = \{p \in X : f(p) \neq 0\}$$

are called distinguished.

- X_f form a basis for the Zariski topology:

$$X \setminus U = Z(\{f_i\}) \implies U = \bigcup_i X_{f_i}.$$

Lemma

Regular functions on X_f are global quotients:

$$\mathcal{O}_X(X_f) = A(X)_f = \left\{ \frac{g}{f^r}, g \in A(X) \right\}.$$
Distinguished open sets

Let \(f \in A(X), \, f \neq 0. \)

- The open sets

\[
X_f = X \setminus Z(f) = \{ p \in X : f(p) \neq 0 \}
\]

are called distinguished.

- \(X_f \) form a basis for the Zariski topology:

\[
X \setminus U = Z(\{ f_i \}) \implies U = \bigcup_i X_{f_i}.
\]

Lemma

Regular functions on \(X_f \) are global quotients:

\[
\mathcal{O}_X(X_f) = A(X)_f = \left\{ \frac{g}{f^r}, g \in A(X) \right\}.
\]

In particular,

\[
\mathcal{O}_X(X) = A(X).
\]
Proof: Let ϕ be regular on X_f.
Proof: Let \(\phi \) be regular on \(X_f \).

- ideal of denominators

\[
j = \{ g \in A(X) : g\phi \in A(X) \}
\]
Proof: Let ϕ be regular on X_f.

- ideal of denominators

$$j = \{g \in A(X) : g\phi \in A(X)\}$$

- We show $f' \in j$ for some r

Note $h(p) \neq 0 \Rightarrow p \notin Z(j) \Rightarrow Z(j) \subset Z(f)$

$IZ(f) \subset IZ(j) \Rightarrow f \in \sqrt{j} = \Rightarrow f' \in j$.
Proof: Let ϕ be regular on X_f.

- ideal of denominators

$$j = \{ g \in A(X) : g\phi \in A(X) \}$$

- We show $f^r \in j$ for some r
- Take $p \in X$,

$$\phi = \frac{g}{h}, \quad h \neq 0 \text{ near } p$$
Proof: Let ϕ be regular on X_f.

- ideal of denominators

$$j = \{g \in A(X) : g\phi \in A(X)\}$$

- We show $f^r \in j$ for some r
- Take $p \in X$, $\phi = \frac{g}{h}$, $h \neq 0$ near p

Thus

$$h\phi = g \in A(X) \implies h \in j$$
Proof: Let ϕ be regular on X_f.

- **ideal of denominators**

 $$j = \{ g \in A(X) : g\phi \in A(X) \}$$

- We show $f^r \in j$ for some r

- Take $p \in X$,

 $$\phi = \frac{g}{h}, \quad h \neq 0 \text{ near } p$$

 Thus

 $$h\phi = g \in A(X) \implies h \in j$$

- Note

 $$h(p) \neq 0 \implies p \notin Z(j)$$
Proof: Let ϕ be regular on X_f.

- ideal of denominators

\[j = \{ g \in A(X) : g\phi \in A(X) \} \]

- We show $f^r \in j$ for some r
- Take $p \in X$,
 \[\phi = \frac{g}{h}, \quad h \neq 0 \text{ near } p \]

 Thus

 \[h\phi = g \in A(X) \implies h \in j \]

- Note

 \[h(p) \neq 0 \implies p \notin Z(j) \implies Z(j) \subset Z(f) \]
Proof: Let ϕ be regular on X_f.

- ideal of denominators

\[j = \{ g \in A(X) : g\phi \in A(X) \} \]

- We show $f^r \in j$ for some r
- Take $p \in X$,
 \[\phi = \frac{g}{h}, \ h \neq 0 \text{ near } p \]
 Thus
 \[h\phi = g \in A(X) \implies h \in j \]

- Note
 \[h(p) \neq 0 \implies p \notin Z(j) \implies Z(j) \subset Z(f) \]

- \[IZ(f) \subset IZ(j) \]
Proof: Let ϕ be regular on X_f.

- **ideal of denominators**

 $$j = \{ g \in A(X) : g\phi \in A(X) \}$$

- We show $f^r \in j$ for some r

- Take $p \in X$,

 $$\phi = \frac{g}{h}, \quad h \neq 0 \text{ near } p$$

 Thus

 $$h\phi = g \in A(X) \implies h \in j$$

- Note

 $$h(p) \neq 0 \implies p \notin Z(j) \implies Z(j) \subset Z(f)$$

- $IZ(f) \subset IZ(j) \implies f \in \sqrt{j} \implies f^r \in j.$
Proof: Let \(\phi \) be regular on \(X_f \).

- ideal of denominators

\[
j = \{ g \in A(X) : g\phi \in A(X) \}
\]

- We show \(f^r \in j \) for some \(r \)
- Take \(p \in X \),

\[
\phi = \frac{g}{h}, \quad h \neq 0 \text{ near } p
\]

Thus

\[
h\phi = g \in A(X) \implies h \in j
\]

- Note

\[
h(p) \neq 0 \implies p \notin Z(j) \implies Z(j) \subset Z(f)
\]

- \[
IZ(f) \subset IZ(j) \implies f \in \sqrt{j} \implies f^r \in j.
\]
Removable singularity theorem

Lemma

Let $U = \mathbb{A}^2 \setminus \{(0, 0)\}$.

Hartogs' theorem: All holomorphic functions on $\mathbb{C}^n \setminus \{0\}$ for $n \geq 2$ extend across the origin.
Removable singularity theorem

Lemma

Let \(U = \mathbb{A}^2 \setminus \{(0, 0)\} \). Then \(\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y] \).
Removable singularity theorem

Lemma

Let $U = \mathbb{A}^2 \setminus \{(0,0)\}$. Then $\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y]$.

All functions on U extend across the origin!
Removable singularity theorem

Lemma

Let \(U = \mathbb{A}^2 \setminus \{(0,0)\} \). Then \(\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y] \).

All functions on \(U \) extend across the origin!

Hartogs' theorem: All holomorphic functions on \(\mathbb{C}^n \setminus \{0\} \) for \(n \geq 2 \) extend across the origin.
Removable singularity theorem

Lemma

Let $U = \mathbb{A}^2 \setminus \{(0,0)\}$. Then $\mathcal{O}_{\mathbb{A}^2}(U) = k[x, y]$.

All functions on U extend across the origin!

Hartogs' theorem: All holomorphic functions on $\mathbb{C}^n \setminus \{0\}$ for $n \geq 2$ extend across the origin.
Let f be regular on U.

\[f(x, y) = p(x, y) x^n = q(x, y) y^m \]

which gives $n = m = 0$ and f is a polynomial.
Let f be regular on U.

f is regular over the basic open set $\mathbb{A}^2 \setminus \{x = 0\}$.
Let f be regular on U.

f is regular over the basic open set $\mathbb{A}^2 \setminus \{x = 0\}$.

$$f(x, y) = \frac{p(x, y)}{x^n}$$

which gives $n = m = 0$ and f is a polynomial.
Let f be regular on U.

- f is regular over the basic open set $\mathbb{A}^2 \setminus \{x = 0\}$

 $$f(x, y) = \frac{p(x, y)}{x^n}$$

- f is regular over the basic open set $\mathbb{A}^2 \setminus \{y = 0\}$

 $$f(x, y) = \frac{q(x, y)}{y^m}$$
Let f be regular on U.

f is regular over the basic open set $\mathbb{A}^2 \setminus \{x = 0\}$

\[f(x, y) = \frac{p(x, y)}{x^n} \]

f is regular over the basic open set $\mathbb{A}^2 \setminus \{y = 0\}$

\[f(x, y) = \frac{q(x, y)}{y^m} \]

\[f(x, y) = \frac{p(x, y)}{x^n} = \frac{q(x, y)}{y^m} \]

which gives $n = m = 0$ and f is a polynomial.
Let \(f \) be regular on \(U \).

\(f \) is regular over the basic open set \(\mathbb{A}^2 \setminus \{x = 0\} \)

\[f(x, y) = \frac{p(x, y)}{x^n} \]

\(f \) is regular over the basic open set \(\mathbb{A}^2 \setminus \{y = 0\} \)

\[f(x, y) = \frac{q(x, y)}{y^m} \]

\[f(x, y) = \frac{p(x, y)}{x^n} = \frac{q(x, y)}{y^m} \]

which gives \(n = m = 0 \) and \(f \) is a polynomial.
Goal: New structures
Goal: New structures

- functions on affine sets \rightarrow sheaves
Goal: New **structures**

- functions on affine sets → **sheaves**

- affine varieties → **ringed spaces**
Goal: New structures

- functions on affine sets → sheaves
- affine varieties → ringed spaces

Bonus:
Goal: New structures

- functions on affine sets → sheaves
- affine varieties → ringed spaces

Bonus:
- sheaves → morphisms
Goal: New structures

- functions on affine sets \rightarrow sheaves

- affine varieties \rightarrow ringed spaces

Bonus:

- sheaves \rightarrow morphisms

- ringed spaces \rightarrow varieties
Goal: New structures

- functions on affine sets → sheaves
- affine varieties → ringed spaces

Bonus:
- sheaves → morphisms
- ringed spaces → varieties
Sheaves in agriculture: a bunch of stalks, bundled together.
Sheaves in agriculture: a bunch of stalks, bundled together.
Sheaves – introduced by Leray in the ’40s, work as POW.
Sheaves – introduced by Leray in the ’40s, work as POW.

The theory was furthered by Cartan, Serre and others.
Sheaves – introduced by Leray in the ’40s, work as POW.

The theory was furthered by Cartan, Serre and others.
Sheaves – introduced by Leray in the ’40s, work as POW.

The theory was furthered by Cartan, Serre and others.
Presheaves

- Regular functions are defined locally
Presheaves

- Regular functions are defined locally
- with an eye for further applications, we introduce a framework for such local constructions
Presheaves

- Regular functions are defined *locally*

- with an eye for *further applications*, we introduce a *framework* for such *local constructions*

Definition

Let X be a topological space. A *presheaf* \mathcal{F} of rings over X is the datum of
Presheaves

- Regular functions are defined \textit{locally}
- with an eye for \textbf{further applications}, we introduce a \textbf{framework} for such \textbf{local constructions}

\textbf{Definition}
Let X be a topological space. A presheaf \mathcal{F} of rings over X is the datum of

- an \textbf{assignment} of a ring

\[U \mapsto \mathcal{F}(U) \]

for each $U \subset X$ open;
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition
Let X be a topological space. A **presheaf** \mathcal{F} of rings over X is the datum of
- an **assignment** of a ring

$$U \mapsto \mathcal{F}(U)$$

for each $U \subset X$ open;
- for each inclusion $U \subset V$, a ring homomorphism

$$\rho_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U)$$

called **restriction**
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition
Let X be a topological space. A **presheaf** \mathcal{F} of rings over X is the datum of

- an **assignment** of a ring

\[U \mapsto \mathcal{F}(U) \]

for each $U \subset X$ open;

- for each inclusion $U \subset V$, a **ring homomorphism**

\[\rho_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U) \]

called **restriction**
subject to the conditions
subject to the conditions

- \(\mathcal{F}(\emptyset) = 0 \)
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{\emptyset, U} = 1$
- for $U \subset V \subset W$ we have

$$\rho_{V, U} \circ \rho_{W, V} = \rho_{W, U}.$$
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
- for $U \subset V \subset W$ we have

$$\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}.$$

Terminology:

- $s \in \mathcal{F}(U) = \Gamma(U, \mathcal{F})$ are called sections of \mathcal{F}
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
- for $U \subset V \subset W$ we have
 \[\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}. \]

Terminology:

- $s \in \mathcal{F}(U) = \Gamma(U, \mathcal{F})$ are called sections of \mathcal{F}

Notation:

- $\rho_{V,U}(s) = s|_U$ for $s \in \mathcal{F}(V)$
subject to the conditions

- \(F(\emptyset) = 0 \)
- \(\rho_{U,U} = 1 \)
- for \(U \subset V \subset W \) we have

\[
\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}.
\]

Terminology:

- \(s \in F(U) = \Gamma(U, F) \) are called sections of \(F \)

Notation:

- \(\rho_{V,U}(s) = s|_U \) for \(s \in F(V) \)
Sheaves

Definition
A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$
Sheaves

Definition
A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij}).$$
Sheaves

Definition
A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij}).$$

Concretely, given

- $s_i \in \mathcal{F}(U_i)$ with
Sheaves

Definition
A presheaf \(\mathcal{F} \to X \) is said to be a sheaf provided that for all open covers

\[
U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j
\]

the sequence is exact

\[
0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{ij} \mathcal{F}(U_{ij}).
\]

Concretely, given

- \(s_i \in \mathcal{F}(U_i) \) with
- \(s_i|_{U_{ij}} = s_j|_{U_{ij}} \)
Sheaves

Definition
A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_{i} U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij}).$$

Concretely, given

- $s_i \in \mathcal{F}(U_i)$ with
- $s_i|_{U_{ij}} = s_j|_{U_{ij}}$

there exists a unique $s \in \mathcal{F}(U)$ with

$$s|_{U_i} = s_i.$$
Sheaves

Definition
A presheaf $F \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to F(U) \to \prod F(U_i) \to \prod F(U_{ij}).$$

Concretely, given

- $s_i \in F(U_i)$ with
- $s_i|_{U_{ij}} = s_j|_{U_{ij}}$

there exists a unique $s \in F(U)$ with

$$s|_{U_i} = s_i.$$
Example: X topological space, \mathcal{C} is the sheaf of continuous functions
\[
\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.
\]
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.$$

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions

$$\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.$$
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.$$

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions

$$\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.$$

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of real analytic functions

$$\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \}.$$
Example: X topological space, \mathcal{C} is the sheaf of continuous functions
\[\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \} . \]

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions
\[\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \} . \]

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of real analytic functions
\[\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \} . \]

Example: $X \subset \mathbb{C}^n$ open, or X complex manifold, \mathcal{O}^{an} is the sheaf of holomorphic functions.
Example: X topological space, \mathcal{C} is the sheaf of \textit{continuous} functions
\[\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}. \]

Example: $X \subset \mathbb{R}^n$ open, or X \textit{smooth} manifold, \mathcal{C}^∞ is the sheaf of \textit{smooth} functions
\[\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}. \]

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of \textit{real analytic} functions
\[\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \}. \]

Example: $X \subset \mathbb{C}^n$ open, or X \textit{complex} manifold, \mathcal{O}^an is the sheaf of \textit{holomorphic} functions.

Example: $X \subset \mathbb{A}^n$ \textit{affine} variety, \mathcal{O}_X the sheaf of \textit{regular} functions
\[U \mapsto \mathcal{O}_X(U). \]
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{f : U \to \mathbb{C} \text{ continuous}\}.$$

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions

$$\mathcal{C}^\infty(U) = \{f : U \to \mathbb{C} \text{ smooth}\}.$$

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of real analytic functions

$$\mathcal{C}^\omega(U) = \{f : U \to \mathbb{R} \text{ real analytic}\}.$$

Example: $X \subset \mathbb{C}^n$ open, or X complex manifold, \mathcal{O}^an is the sheaf of holomorphic functions.

Example: $X \subset \mathbb{A}^n$ affine variety, \mathcal{O}_X the sheaf of regular functions

$$U \mapsto \mathcal{O}_X(U).$$
Example: $p \in X$, the skyscraper sheaf

$$
\mathbb{C}_p(U) = \begin{cases}
0 & \text{if } p \not\in U \\
\mathbb{C} & \text{if } p \in U
\end{cases}
$$
Example: \(p \in X \), the skyscraper sheaf

\[\mathcal{C}_p(U) = \begin{cases} 0 & \text{if } p \notin U \\ \mathbb{C} & \text{if } p \in U \end{cases} \]

Example: \(\mathcal{F} \to X \) sheaf, \(U \subset X \) open, then the restriction \(\mathcal{F}|_U \) is a sheaf given by

\[\mathcal{F}|_U(V) = \mathcal{F}(V) \]
Example: $p \in X$, the skyscraper sheaf

$$C_p(U) = \begin{cases} 0 & \text{if } p \notin U \\ \mathbb{C} & \text{if } p \in U \end{cases}$$

Example: $\mathcal{F} \to X$ sheaf, $U \subset X$ open, then the restriction $\mathcal{F}|_U$ is a sheaf given by

$$\mathcal{F}|_U(V) = \mathcal{F}(V)$$

Example: \mathbb{R} the presheaf of constant functions

$$\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant } \}$$

is not a sheaf.
Example: $p \in X$, the skyscraper sheaf

\[C_p(U) = \begin{cases}
0 & \text{if } p \notin U \\
\mathbb{C} & \text{if } p \in U
\end{cases} \]

Example: $\mathcal{F} \rightarrow X$ sheaf, $U \subset X$ open, then the restriction $\mathcal{F}|_U$ is a sheaf given by

\[\mathcal{F}|_U(V) = \mathcal{F}(V) \]

Example: \mathbb{R} the presheaf of constant functions

\[\mathbb{R}(U) = \{ f : U \rightarrow \mathbb{R} : f \text{ is constant} \} \]

is not a sheaf.

If $W = U \cup V$ is a disjoint union, gluing fails.
Example: \(p \in X \), the skyscraper sheaf

\[
\mathbb{C}_p(U) = \begin{cases}
0 & \text{if } p \notin U \\
\mathbb{C} & \text{if } p \in U
\end{cases}
\]

Example: \(\mathcal{F} \to X \) sheaf, \(U \subset X \) open, then the restriction \(\mathcal{F}|_U \) is a sheaf given by

\[
\mathcal{F}|_U(V) = \mathcal{F}(V)
\]

Example: \(\mathbb{R} \) the presheaf of constant functions

\[
\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant} \}
\]

is not a sheaf.

If \(W = U \cup V \) is a disjoint union, gluing fails.

Example: \(\mathbb{R} \) the sheaf of locally constant functions

\[
\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is locally constant} \}
\]
Example: $p \in X$, the skyscraper sheaf

$$\mathbb{C}_p(U) = \begin{cases} 0 & \text{if } p \notin U \\ \mathbb{C} & \text{if } p \in U \end{cases}$$

Example: $\mathcal{F} \to X$ sheaf, $U \subset X$ open, then the restriction $\mathcal{F}|_U$ is a sheaf given by

$$\mathcal{F}|_U(V) = \mathcal{F}(V)$$

Example: \mathbb{R} the presheaf of constant functions

$$\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant } \}$$

is not a sheaf.

If $W = U \cup V$ is a disjoint union, gluing fails.

Example: \mathbb{R} the sheaf of locally constant functions

$$\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is locally constant } \}$$
Philosophy:

- function-like objects give presheaves
Philosophy:

- **function-like** objects give presheaves
- **global** conditions give presheaves, **local** conditions give sheaves
Philosophy:

- function-like objects give presheaves
- global conditions give presheaves, local conditions give sheaves
- sheafification!
Philosophy:

- function-like objects give presheaves
- global conditions give presheaves, local conditions give sheaves
- sheafification!
Stalks: For $p \in X$, $\mathcal{F} \to X$ a presheaf, define the stalks

$$\mathcal{F}_p = \lim_{\to p \in U} \mathcal{F}(U).$$
Stalks: For $p \in X$, $\mathcal{F} \rightarrow X$ a presheaf, define the stalks

$$\mathcal{F}_p = \lim_{\xrightarrow{\rightarrow} p \in U} \mathcal{F}(U).$$

Concretely, consider pairs

$$(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)$$
Stalks: For \(p \in X \), \(F \to X \) a presheaf, define the stalks

\[
F_p = \lim_{\to \ p \in U} F(U).
\]

Concretely, consider pairs

\[(U, s), \ p \in U \subset X, \ s \in F(U)\]

modulo equivalence

\[(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', \ s|_W = s'|_W.\]
Stalks: For \(p \in X \), \(\mathcal{F} \rightarrow X \) a presheaf, define the stalks

\[
\mathcal{F}_p = \lim_{\rightarrow p \in U} \mathcal{F}(U).
\]

Concretely, consider pairs

\[(U, s), \quad p \in U \subset X, \quad s \in \mathcal{F}(U)\]

modulo equivalence

\[(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', \ s|_W = s'|_W.\]

The germ of a section of \(\mathcal{F} \) at \(p \) is an equivalence class \((U, s)\).
Stalks: For $p \in X$, $\mathcal{F} \to X$ a presheaf, define the stalks

$$\mathcal{F}_p = \lim_{\to p \in U} \mathcal{F}(U).$$

Concretely, consider pairs

$$(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)$$

modulo equivalence

$$(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', \ s|_W = s'|_W.$$

The germ of a section of \mathcal{F} at p is an equivalence class (U, s).

The stalks are also rings $(U, s) + (U', s') = (U \cap U', s + s')$.
Stalks: For $p \in X$, $\mathcal{F} \to X$ a presheaf, define the stalks

$$\mathcal{F}_p = \lim_{\to p \in U} \mathcal{F}(U).$$

Concretely, consider pairs

$$(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)$$

modulo equivalence

$$(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', \ s|_W = s'|_W.$$

The germ of a section of \mathcal{F} at p is an equivalence class (U, s).

The stalks are also rings $(U, s) + (U', s') = (U \cap U', s + s')$.
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there's more information than the value at p
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there’s more information than the value at p

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The *stalk* of the sheaf \mathcal{O}_X at p is the *local ring* $\mathcal{O}_{X,p}$ defined before.
Philosophy:
- germs of functions in \mathcal{O}_X can be evaluated at p
- there’s more information than the value at p

Lemma
Let $X \subset \mathbb{A}^n$ be an affine variety. The stalk of the sheaf \mathcal{O}_X at p is the local ring $\mathcal{O}_{X,p}$ defined before.

Proof: An element in the local ring $\phi = \frac{f}{g}$ gives a germ (U, ϕ) where $p \in U = \{g \neq 0\}$.
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there’s more information than the value at p

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The stalk of the sheaf \mathcal{O}_X at p is the local ring $\mathcal{O}_{X, p}$ defined before.

Proof: An element in the local ring $\phi = \frac{f}{g}$ gives a germ (U, ϕ) where $p \in U = \{g \neq 0\}$.
Ringed spaces

Definition
A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf \(\mathcal{O}_X\) is called a ringed space.
Ringed spaces

Definition
A pair \((X, \mathcal{O}_X)\) consisting of a \textit{topological space} \(X\) together with a \textit{sheaf} \(\mathcal{O}_X\) is called a \textit{ringed space}.

Example: An \textit{affine} variety is a ringed space.
Ringed spaces

Definition
A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf \(\mathcal{O}_X\) is called a ringed space.

Example: An affine variety is a ringed space.

Example: A real/complex manifold is a ringed space.
Ringed spaces

Definition
A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf \(\mathcal{O}_X\) is called a ringed space.

Example: An affine variety is a ringed space.

Example: A real/complex manifold is a ringed space.