Math 203A - Solution Set 1

Problem 1. Show that the Zariski topology on \mathbb{A}^2 is not the product of the Zariski topologies on $\mathbb{A}^1 \times \mathbb{A}^1$.

Answer: Clearly, the diagonal
$$Z = \{(x, y) : x - y = 0\} \subset \mathbb{A}^2$$
is closed in the Zariski topology of \mathbb{A}^2. We claim this Z is not closed in the product topology of $\mathbb{A}^1 \times \mathbb{A}^1$. Assuming otherwise, the complement $\mathbb{A}^2 \setminus Z$ should be open in the product topology. Therefore, there are nonempty open sets U, V in \mathbb{A}^1 such that
$$U \times V \subset \mathbb{A}^2 \setminus Z.$$Now, the sets U and V have finite complements:
$$U = \mathbb{A}^1 \setminus \{p_1, \ldots, p_n\},$$
$$V = \mathbb{A}^1 \setminus \{q_1, \ldots, q_m\}.$$We obtain a contradiction picking
$$z \in \mathbb{A}^1 \setminus \{p_1, \ldots, p_n, q_1, \ldots, q_m\}.$$In this case, we clearly have
$$(z, z) \in U \times V, \text{ while } (z, z) \notin \mathbb{A}^2 \setminus Z.$$□

Problem 2. A topological space X is said to be Noetherian if it satisfies the ascending chain condition on open sets, i.e. any ascending chain of open sets eventually stabilizes.

(i) Check that any subset $Y \subset X$ of a Noetherian space is also Noetherian in the subspace topology.

(ii) Show that \mathbb{A}^n is Noetherian in the Zariski topology. Conclude that any affine algebraic set is Noetherian.

(iii) Show that a Noetherian space is quasi-compact i.e., show that any open cover of a Noetherian space has a finite subcover.

Answer: (i) If $\{U_i\}_{i \geq 1}$ is an ascending chain of open subsets of Y, there exists $\{V_i\}_{i \geq 1}$ open subsets of X such that
$$V_i \cap Y = U_i$$for all i. Note that $\{V_i\}_{i \geq 1}$ may not be ascending, but let
$$W_i = \bigcup_{k=1}^i V_k.$$
Then $\{W_i\}_{i \geq 1}$ is clearly ascending and

$$W_i \cap Y = (\cup_{k=1}^i V_k) \cap Y = \cup_{k=1}^i (V_k \cap Y) = \cup_{k=1}^i U_k = U_i.$$

Using that $\{W_i\}_{i \geq 1}$ is an ascending chain of open subsets of X, and that X is Noetherian, there exists n_0 such that $W_n = W_{n_0}$ for all $n \geq n_0$. Therefore,

$$U_n = W_n \cap Y = W_{n_0} \cap Y = U_{n_0}$$

for all $n \geq n_0$, i.e. $\{U_i\}_{i \geq 1}$ eventually stabilizes. This implies Y is Noetherian.

(iI) It suffices to show that A^n satisfies the ascending chain condition on open sets. If $\{U_i\}$ be an ascending chain of open sets, let Y_i be the complement of U_i in A^n. Then $\{Y_i\}$ is a descending chain of closed sets. Since taking ideal reverses inclusions, we conclude that $\mathcal{I}(Y_i)$ is an ascending chain of ideals in $k[X_1, \ldots, X_n]$. This chain should eventually stabilize, so

$$\mathcal{I}(Y_n) = \mathcal{I}(Y_{n+1}) = \ldots,$$

for n large enough. Applying Z to these equalities, we obtain

$$Y_n = Y_{n+1} = \ldots.$$

This clearly implies that the chain $\{U_i\}$ stabilizes.

(iii) Order the open sets in X by inclusion. It is clear that any collection \mathfrak{U} of open sets in X must have a maximal element. Indeed, if this was false, we could inductively produce a strictly increasing chain of open sets, violating the fact that X is Noetherian.

Now, consider an open cover

$$X = \bigcup_{\alpha} U_{\alpha},$$

and define the collection \mathfrak{U} consisting in finite union of the open sets U_{α}. The collection \mathfrak{U} must have a maximal element $U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}$. We claim

$$X = U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}.$$

Indeed, otherwise we could find

$$x \in X \setminus (U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}).$$

Now, $x \in U_{\beta}$ for some index β. Then,

$$U_{\beta} \cup U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}$$

belongs to the collection \mathfrak{U}, and strictly contains the maximal element of \mathfrak{U}, namely $U_{\alpha_1} \cup \ldots \cup U_{\alpha_n}$. This is absurd, thus proving our claim. \qed
Problem 3. Let \mathbb{A}^3 be the 3-dimensional affine space with coordinates x, y, z. Find the ideals of the following algebraic sets:

(i) The union of the (x, y)-plane with the z-axis.

(ii) The image of the map $\mathbb{A}^1 \to \mathbb{A}^3$ given by $t \to (t, t^2, t^3)$.

Answer: (i) The ideal of the (x, y)-plane is (z). The ideal of the z-axis is (x, y). By Problem 6, the ideal we’re looking for is $(z) \cap (x, y) = (xz, yz)$.

(ii) Let I be the ideal of the set (t, t^2, t^3) in \mathbb{A}^3, as $t \in \mathbb{A}^1$. Observe $(z - x^3, y - x^2)$ is clearly contained in I. We claim that $I = (z - x^3, y - x^2)$. We need to show every $f \in I$ is in the ideal $(z - x^3, y - x^2)$. Indeed, let us consider the image of f in the quotient ring $\mathbb{A} = \mathbb{C}[x, y, z] / (z - x^3, y - x^2)$.

We would like to show that the image of f is 0 in \mathbb{A}. Now, in the ring \mathbb{A} the relations $z = x^3, y = x^2$ are satisfied. Thus

$$f(x, y, z) = f(x, x^2, x^3) \text{ in } \mathbb{A}.$$

Consider the polynomial $g(x) = f(x, x^2, x^3)$. Since $f(t, t^3, t^5) = 0$, we see $g(t) = 0$ for all t. Therefore $g \equiv 0$ as a polynomial in x. (This uses that the ground field is infinite). Therefore,

$$f(x, y, z) = 0 \text{ in } \mathbb{A} = \mathbb{C}[x, y, z] / (z - x^3, y - x^2),$$

which is what we wanted.

□

Problem 4. Let $f : \mathbb{A}^n \to \mathbb{A}^m$ be a polynomial map i.e. $f(p) = (f_1(p), \ldots, f_m(p))$ for $p \in \mathbb{A}^n$, where f_1, \ldots, f_m are polynomials in n variables. Are the following true or false:

(1) The image $f(X) \subset \mathbb{A}^m$ of an affine algebraic set $X \subset \mathbb{A}^n$ is an affine algebraic set.

(2) The inverse image $f^{-1}(X) \subset \mathbb{A}^n$ of an affine algebraic set $X \subset \mathbb{A}^m$ is an affine algebraic set.

(3) If $X \subset \mathbb{A}^n$ is an affine algebraic set, then the graph $\Gamma = \{(x, f(x)) : x \in X\} \subset \mathbb{A}^{n+m}$ is an affine algebraic set.

Answer: (i) False. Consider the following counterexample which works over infinite ground fields. Consider the hyperbola

$$X = \{(x, y) : xy - 1 = 0\} \subset \mathbb{A}^2.$$
Clearly, X is an algebraic set. Let $f : \mathbb{A}^2 \to \mathbb{A}^1$, $f(x, y) = x$
be the projection onto the first axis. The image of f in \mathbb{A}^1 is $\{x : x \neq 0\}$. This
is not an algebraic set because the only algebraic subsets of \mathbb{A}^1 are empty set, finitely many points or \mathbb{A}^1.

(ii) True. Suppose $X = \mathcal{Z}(F_1, \ldots, F_s) \subseteq \mathbb{A}^m$, where F_1, \ldots, F_s are polynomials in m variables. Define

$$G_i = F_i(f_1(X_1, \ldots, X_n), \ldots, f_m(X_1, \ldots, X_n)), 1 \leq i \leq s.$$

These are clearly polynomials in n variables. In short, we set

$$G_i = F_i \circ f, \ 1 \leq i \leq s$$

We claim $f^{-1}(X) = \mathcal{Z}(G_1, \ldots, G_s) \subseteq \mathbb{A}^n$,

which clearly exhibits $f^{-1}(X)$ as an algebraic set. This claim follows from the

remarks

$$p \in f^{-1}(X) \iff f(p) \in \mathcal{Z}(F_1, \ldots, F_s) \iff F_1(f(p)) = F_2(f(p)) = \ldots = F_s(f(p)) = 0$$

$$\iff G_1(p) = \ldots = G_s(p) \iff p \in \mathcal{Z}(G_1, \ldots, G_s).$$

(iii) True. Assume that X is defined by the vanishing of the polynomials F_1, \ldots, F_s
in the variables X_1, \ldots, X_n. Set

$$G_1 = Y_1 - f_1(X_1, \ldots, X_n), \ldots, G_m = Y_m - f_m(X_1, \ldots, X_n).$$

We regard the F and G's as polynomials in the $n+m$ variables $X_1, \ldots, X_n, Y_1, \ldots, Y_m$.

We claim that the graph Γ is defined by the equations

$$\Gamma = \mathcal{Z}(F_1, \ldots, F_s, G_1, \ldots, G_s) \subseteq \mathbb{A}^{n+m}.$$

Indeed,

$$(x, y) \in \mathcal{Z}(F_1, \ldots, F_s, G_1, \ldots, G_s) \iff F_1(x) = \ldots = F_s(x) = 0, y_1 = f_1(x), \ldots, y_m = f_m(x)$$

$$\iff x \in X, y = f(x) \iff (x, y) \in \Gamma.$$

\[\square\]

Problem 5. Let X_1, X_2 be affine algebraic sets in \mathbb{A}^n. Show that

(i) $I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$,

(ii) $I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}$.

Show by an example that taking radicals in (ii) is necessary.
Answer:
(i) If \(f \in I(X_1 \cup X_2) \), \(f \) vanishes on \(X_1 \cup X_2 \). In particular, \(f \) vanishes on \(X_1 \). Thus, \(f \in I(X_1) \). Similarly, we have \(f \in I(X_2) \). Then \(f \in I(X_1) \cap I(X_2) \). We proved that
\[I(X_1 \cup X_2) \subseteq I(X_1) \cap I(X_2). \]
On the other hand, if \(f \in I(X_1) \cap I(X_2) \), then \(f \in I(X_1) \) and \(f \in I(X_2) \). Therefore, \(f \) vanishes on both \(X_1 \) and \(X_2 \), and then also on \(X_1 \cup X_2 \). This implies that \(f \in I(X_1 \cup X_2) \). Hence
\[I(X_1) \cap I(X_2) \subseteq I(X_1 \cup X_2). \]
(ii) We assume the base field is algebraically closed. Because \(X_1, X_2 \) be affine algebraic sets, we can assume
\[X_1 = \mathcal{Z}(a), X_2 = \mathcal{Z}(b). \]
Furthermore, we may assume \(a \) and \(b \) are radical. Otherwise, if for instance \(a \) is not radical, we can replace \(a \) by \(\sqrt{a} \). This doesn’t change the algebraic sets in question as
\[X_1 = \mathcal{Z}(a) = \mathcal{Z}(\sqrt{a}). \]
By Hilbert’s Nullstellensatz,
\[\sqrt{I(X_1) + I(X_2)} = \sqrt{I(\mathcal{Z}(a)) + I(\mathcal{Z}(b))} = \sqrt{\sqrt{a} + \sqrt{b}} = \sqrt{a + b} \]
and
\[I(X_1 \cap X_2) = I(\mathcal{Z}(a) \cap \mathcal{Z}(b)) = I(\mathcal{Z}(a + b)) = \sqrt{a + b}. \]
Therefore,
\[I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}. \]
Note: In the above, we made use of the equality
\[\mathcal{Z}(a) \cap \mathcal{Z}(b) = \mathcal{Z}(a + b). \]
This can be argued as follows. If \(x \in \mathcal{Z}(a) \cap \mathcal{Z}(b) \), then \(f(x) = g(x) = 0 \) for all \(f \in a \) and \(g \in b \). Thus \(x \in \mathcal{Z}(a + b) \) proving that
\[\mathcal{Z}(a) \cap \mathcal{Z}(b) \subseteq \mathcal{Z}(a + b). \]
Conversely, if \(x \in \mathcal{Z}(a + b) \), then \((f + g)(x) = 0 \) for every \(f \in a \) and \(g \in b \). In particular, picking \(g = 0 \), we get \(f(x) = 0 \) for every \(f \in a \), so \(x \in \mathcal{Z}(a) \). Similarly \(x \in \mathcal{Z}(b) \). Therefore
\[\mathcal{Z}(a + b) \subseteq \mathcal{Z}(a) \cap \mathcal{Z}(b). \]
Counterexample: Consider the following two algebraic subsets of \(\mathbb{A}^2 \):
\[X_1 = (y - x^2 = 0), X_2 = (y = 0). \]
Graphically, these can be represented by a parabola and a line tangent to it. It is clear that

\[X_1 \cap X_2 = \{0\}, \text{ so } I(X_1 \cap X_2) = (x, y). \]

On the other hand,

\[I(X_1) + I(X_2) = (y - x^2) + (y) = (y - x^2, y) = (y, x^2). \]

Therefore

\[I(X_1 \cap X_2) \neq I(X_1) + I(X_2). \]

\[\square \]

Problem 6. Find the irreducible components of the affine algebraic set \(xz - y^2 = z^3 - x^5 = 0\) in \(\mathbb{A}^3\).

Answer: If \(x = 0\), then the two equations imply that \(y = z = 0\). Similarly, if \(y = 0\), then \(x = z = 0\). Let us assume that \(x \neq 0\), \(y \neq 0\).

Write the first equation as

\[\frac{y}{x} = \frac{z}{y} := t. \]

Thus,

\[y = tx, \ z = t^2x. \]

The second equation becomes

\[z^3 = x^5 \iff t^6 x^3 = x^5 \iff x^2 = t^6 \iff x = \pm t^3. \]

This implies

\[y = \pm t^4, \ z = \pm t^5. \]

Thus \((x, y, z) = (t^3, t^4, t^5)\) or \((-t^3, -t^4, -t^5)\) for some \(t \in \mathbb{C}\).

Letting

\[X_1 = \{(t^3, t^4, t^5) \mid t \in \mathbb{C}\} \quad \text{and} \quad X_2 = \{(-t^3, -t^4, -t^5) \mid t \in \mathbb{C}\} \]

we obtain

\[X = X_1 \cup X_2. \]

We claim that \(X_1, X_2\) are the irreducible components of \(X\).

First, there are polynomial maps

\[f_1 : \mathbb{A}^1 \to \mathbb{A}^3 \quad t \to (t^3, t^4, t^5) \quad \text{and} \quad f_2 : \mathbb{A}^1 \to \mathbb{A}^3 \quad t \to (-t^3, -t^4, -t^5). \]

Since \(X_1 = f_1(\mathbb{A}^1)\), \(X_2 = f_2(\mathbb{A}^1)\) and \(\mathbb{A}^1\) is irreducible, the images \(X_1\) and \(X_2\) are irreducible.

It remains to explain that \(X_1\) and \(X_2\) are algebraic sets. We claim

\[X_1 = \mathcal{Z}(y^3 - x^4, z^3 - x^5, z^4 - y^5), \quad X_2 = \mathcal{Z}(y^3 + x^4, z^3 - x^5, z^4 + y^5). \]
Let us check this claim for X_1 only. This follows using the same strategy as before. Indeed, if $x = 0$ then $y = z = 0$, so we may assume $x \neq 0$. Let
$$t = \frac{y}{x},$$
From the first equation we have
$$x = \left(\frac{y}{x}\right)^3 = t^3 \implies y = t^4.$$
Dividing the last two equations we get
$$z = \frac{y^5}{x^5} = t^5 \implies (x, y, z) = (t^3, t^4, t^5),$$
as claimed. The verification for X_2 is entirely similar.

\[\square \]

Problem 7. Let Y be a subspace of a topological space X. Show that Y is irreducible if and only if the closure of Y in X is irreducible.

Answer: Assume Y is irreducible. If $\overline{Y} = Y_1 \cup Y_2$, with Y_1, Y_2 are proper closed subsets in \overline{Y}. Then Y_1, Y_2 are closed in X. Note that
$$Y = (Y_1 \cap Y) \cup (Y_2 \cap Y),$$
and $Y_1 \cap Y, Y_2 \cap Y$ are closed in Y. This implies that for some $1 \leq i \leq 2$,
$$Y_i \cap Y = Y \implies Y \subset Y_i \implies \overline{Y} \subset Y_i (= \text{closed})$$
which is a contradiction.

The converse is similar. Assume \overline{Y} is irreducible, and that $Y = Y_1 \cup Y_2$, with Y_1, Y_2 closed in Y. Write
$$Y_i = F_i \cap Y,$$
where F_1, F_2 are closed in X. We have
$$Y \subset F_1 \cup F_2 \implies \overline{Y} \subset F_1 \cup F_2 \implies \overline{Y} = (F_1 \cap \overline{Y}) \cup (F_2 \cap \overline{Y}).$$
Hence, for some i,
$$F_i \cap \overline{Y} = \overline{Y} \implies \overline{Y} \subset F_i \implies Y \subset F_i \cap Y = Y_i \implies Y_i = Y.$$

\[\square \]

Problem 8. Let X be the union of the three coordinate axes in \mathbb{A}^3. Determine generators for the ideal $I(X)$. Show that $I(X)$ cannot be generated by fewer than 3 elements.

Answer: We claim that
$$I(X) = (xy, yz, zx).$$
Clearly, xy, yz, zx vanish on X. Conversely, if a polynomial
\[f = \sum_{(i,j,k)} a_{ikj} x^i y^j z^k \]
vanishes on the x-axis, then $f(x, 0, 0) = 0$, hence
\[a_{i00} = 0, \text{ for } i \geq 0. \]

Similarly,
\[a_{i00} = a_{0j0} = a_{00k} = 0, \text{ for all } i, j, k \geq 0. \]

This means that
\[f \in \langle xy, yz, zx \rangle. \]

Now, $I(X)$ cannot be generated by one polynomial f since then f will have to divide xy, yz, zx which have no common factors.

Assume that $I(X)$ is generated by two elements (f, g). Since $f \in \langle xy, yz, zx \rangle$, we see that
\[f = xyP + yzQ + zxR \]
for some polynomials P, Q, R. Letting \tilde{f} be the degree 2 component of f, and p, q, r be the free terms in P, Q, R, we obtain that
\[\tilde{f} = pxy + qyz + rzx \]
only contains the monomials xy, yz, zx. The similar remark applies to the degree 2 piece \tilde{g} of the polynomial g.

Furthermore, there must be polynomials A_1, B_1 such that
\[yz = A_1 f + B_1 g. \]

Look at the degree 2 terms of the above equality. Letting a_1, b_1 be the free terms in A_1, B_1, we obtain
\[yz = a_1 \tilde{f} + b_1 \tilde{g}. \]

Similarly,
\[xz = a_2 \tilde{f} + b_2 \tilde{g}, \]
\[xy = a_3 \tilde{f} + b_3 \tilde{g}. \]

To reach a contradiction, consider the V the three dimensional vector space of polynomials of degree 2 which contain the monomials xy, yz, zx only. We observed that
\[\tilde{f}, \tilde{g} \in V. \]

Moreover, the last three equations above show that \tilde{f} and \tilde{g} span the three dimensional vector space V. This is a contradiction showing that $I(X)$ cannot be generated by fewer than 3 elements. \[\square \]