Problem 1. Let V be a finite dimensional vector space and let $\omega \in \Lambda^2 V$ be such that $\omega \wedge \omega = 0$. Show that $\omega = v \wedge w$ for some vectors $v, w \in V$.

Answer: It is clear that if $\omega = v \wedge w$ then $\omega \wedge \omega = 0$. Conversely, we will induct on n, the base case $n = 2$ being clear. Let us write

$$\omega = e_0 \wedge \eta + \omega'$$

where ω', η do not contain the vector e_0. Thus

$$0 = \omega \wedge \omega = 2e_0 \wedge \eta \wedge \omega' + \omega' \wedge \omega'.$$

This implies that

$$\omega' \wedge \omega' = 0$$

hence by induction

$$\omega' = v \wedge w,$$

with v, w being in the subspace spanned by e_1, \ldots, e_n. Also, we know

$$e_0 \wedge \eta \wedge \omega' = 0 \implies \eta \wedge v \wedge w = 0.$$

This shows that η cannot be independent of v, w hence

$$\eta = av + bw.$$

Collecting terms we find

$$\omega = e_0 \wedge (av + bw) + v \wedge w = (v + be_0) \wedge (w + ae_0)$$

as claimed.

\[\square\]

Problem 2. The set X of degree d homogeneous polynomials in $n+1$ variables can be identified with a projective space \mathbb{P}^N, by recording the coefficients in some order. What is N?

Show that the set of reducible polynomials form a closed subset of X.

Answer: The space V_d of degree d polynomials in $n+1$ variables has dimension $\binom{n+d}{d}$. Consider the morphism

$$\phi_k : \mathbb{P}(V_k) \times \mathbb{P}(V_{d-k}) \to \mathbb{P}(V_d), \quad (f,g) \mapsto f \cdot g.$$

Clearly, ϕ_k is a morphism. This can be seen by writing

$$f = \sum a_I z^I, \quad g = \sum b_J z^J \implies f \cdot g = \sum_K \left(\sum_{I+J=K} a_I b_J \right) z^K$$

which shows

$$\phi_k(a_I, b_J) = (c_K), \quad c_K = \sum_{I+J=K} a_I b_J.$$

1
This is a morphism. By the main theorem of projective geometry,

\[Y_k = \text{Image } \phi_k \]

is closed. The reducible polynomials are given as

\[Y = \bigcup_{k=1}^{d-1} Y_k. \]

This set is therefore also closed in \(X \).

Problem 3. Show that \(\mathbb{P}^1 \times \mathbb{A}^1 \) and \(\mathbb{P}^2 \setminus \{x\} \) are neither affine nor projective.

Answer: Write \(t \) for the coordinate on \(\mathbb{A}^1 \). We claim that the regular functions on \(\mathbb{P}^1 \times \mathbb{A}^1 \) are polynomials \(f(t) \). This will show that \(\mathbb{P}^1 \times \mathbb{A}^1 \) is not projective, because projective varieties only have constants as regular functions. It also shows \(X = \mathbb{P}^1 \times \mathbb{A}^1 \) is not affine since it were affine, its coordinate ring would be

\[A(X) = k[t] = A(\mathbb{A}^1). \]

Then \(X \simeq \mathbb{A}^1 \), but this is clearly impossible for dimension reasons.

Indeed, let \(U, V \) be two affine opens covering \(\mathbb{P}^1 \). We have

\[U \simeq \mathbb{A}^1, \quad V \simeq \mathbb{A}^1 \]

with coordinates \(z, w \) and \(w = \frac{1}{z} \) over overlaps. Let \(\phi \) be a regular function on \(\mathbb{P}^1 \times \mathbb{A}^1 \). Then \(\phi \) is regular on \(U \times \mathbb{A}^1 \simeq \mathbb{A}^2 \) so

\[\phi = p(z, t) \]

for some polynomial \(p \). Similarly, \(\phi \) is regular on \(V \times \mathbb{A}^1 \simeq \mathbb{A}^2 \) so

\[\phi = q(w, t) \]

for some polynomial \(q \). Over \((U \cap V) \times \mathbb{A}^1 \) we must have

\[p(z, t) = q\left(\frac{1}{z}, t\right). \]

The powers of \(z \) on the left have nonnegative exponents, while the powers of \(z \) on the right have nonpositive exponents, so the exponents must be 0. Thus,

\[p(z, t) = q\left(\frac{1}{z}, t\right) = f(t) \implies \phi = f(t) \]

for some polynomial \(f \).

For \(Y = \mathbb{P}^2 \setminus \{x\} \), we claim that all regular functions are constant. This will show that \(Y \) cannot be affine because

\[A(Y) = k = A(\text{point}) \implies Y \simeq \text{point} \]
which is clearly impossible for dimension reasons. Indeed, if \(\phi \) is regular on \(\mathbb{P}^2 \setminus \{x\} \), then consider the restriction of \(\phi \) to \(U = \mathbb{A}^2 \setminus \{0\} \). This extends to a regular function on \(\mathbb{A}^2 \) by the removable singularity theorem. Thus \(\phi \) extends to a regular function on \(\mathbb{P}^2 \), showing then that \(\phi \) must be constant.

To see \(Y \) is not projective, assume otherwise. Let \(L = \{ \ell = 0 \} \) be a line in \(\mathbb{P}^2 \) through \(x \). Then, \(Z = L \setminus \{x\} \) is closed in \(Y \) so it must be projective. This is not true since \(Z = L \setminus \{x\} \simeq \mathbb{A}^1 \). \(Z \) admits nonconstant regular functions, so it cannot be projective. This contradiction shows that \(Y \) is not projective.

Problem 4. (Joins.) Let \(G(1,n) \) be the Grassmannian of lines in \(\mathbb{P}^n \) as in the previous homework. Show that:

(i) The set \(\{(L,P) : P \in L \} \subset G(1,n) \times \mathbb{P}^n \) is closed.

(ii) If \(Z \subset G(1,n) \) is any closed subset then the union of all lines \(L \subset \mathbb{P}^n \) such that \(L \in Z \) is closed in \(\mathbb{P}^n \).

(iii) Let \(X,Y \subset \mathbb{P}^n \) be disjoint projective varieties. Then the union of all lines in \(\mathbb{P}^n \) intersecting \(X \) and \(Y \) is a closed subset of \(\mathbb{P}^n \). It is called the join \(J(X,Y) \) of \(X \) and \(Y \).

Answer:

(i) We let

\[
J = \{(P,L) : P \in L \} \subset \mathbb{P}^n \times G(1,n).
\]

We will think of lines \(L \) in terms of their Plucker coordinates

\[
z_{ij} = a_i b_j - a_j b_i
\]

where \(a, b \) are two points on \(L \) with

\[
a = [a_0 : \ldots : a_n], \quad b = [b_0 : \ldots : b_n].
\]

In fact, it will be useful to form the vectors

\[
a = \sum a_i e_i, \quad b = \sum b_i e_i.
\]

Similarly, a point \(P \in \mathbb{P}^n \) will have an associated vector

\[
p = \sum p_i e_i.
\]

Now, if \(P \in L \), then \(p = sa + tb \) hence

\[
p \wedge a \wedge b = 0.
\]

Then

\[
\left(\sum p_i e_i \right) \wedge \left(\sum a_i e_i \right) \wedge \left(\sum b_i e_i \right) = \left(\sum p_i e_i \right) \wedge \left(\sum_{j<k} z_{jk} e_j \wedge e_k \right)
\]

\[
= \sum_{i<j<k} (p_i z_{jk} - p_j z_{ik} + p_k z_{ij}) e_i \wedge e_j \wedge e_k.
\]
The conclusion is that J is defined by the equations

$$p_i z_{jk} - p_j z_{ik} + p_k z_{ij} = 0$$

which are bihomogeneous in the variables. Thus, J is projective.

(ii) Let

$$p : J \rightarrow \mathbb{G}(1, n), q : J \rightarrow \mathbb{P}^n$$

be the natural projections. Then, for any Z closed in $\mathbb{G}(1, n)$, the preimage $p^{-1}(Z)$ is also closed. Thus $q(p^{-1}(Z))$ is closed by the main theorem of projective varieties. This set consists in points P lying on lines L such that $L \in Z$, hence it can be identified with the union of all lines in Z.

(iii) We let A be the set of lines intersecting X and B be the set of lines intersecting Y. We show A and B are closed in $\mathbb{G}(1, n)$, hence so is $Z = A \cap B$. The join $J(X, Y)$ is simply the union of lines contained in Z hence it must be closed in \mathbb{P}^n by item (ii).

It suffices to prove A is closed in $\mathbb{G}(1, n)$. Indeed, we can think of A as the projection under p of the set

$$\{(P, L) : P \in L \cap X \times \mathbb{G}(1, n)) = J \cap q^{-1}(X).$$

Hence

$$A = p(J \cap q^{-1}(X))$$

which is closed because p is closed and q is continuous.

\[\square\]

Problem 5. (Rational varieties.) The definition of birational isomorphisms given in class extends to the projective category. Two projective varieties X and Y are birational if there are rational maps

$$f : X \dashrightarrow Y, \ g : Y \dashrightarrow X.$$

which are rational inverses to each other. Just as in the affine case, a birational isomorphism $f : X \dashrightarrow Y$ induces an isomorphism of the fields of rational functions $f^* : K(Y) \rightarrow K(X)$.

(i) Explain that if X is rational, then

$$K(X) \cong k(t_1, \ldots, t_n).$$

(ii) Show that $\mathbb{P}^n \times \mathbb{P}^m$ is rational, by constructing an explicit birational isomorphism with \mathbb{P}^{n+m}. Show that if X and Y are rational, then $X \times Y$ is rational.

(iii) Show that \mathbb{P}^2 is not isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.

4
(iv) The group of automorphisms of the field of fractions in two variables $k(x, y)$ is called the Cremona group. Explain that the elements of the Cremona group correspond to birational self-isomorphisms of \mathbb{P}^2. Explain that the Cremona involution

$$(x, y) \mapsto (x^{-1}, y^{-1})$$
extends to an automorphism of $k(x, y)$. What is the corresponding birational involution of \mathbb{P}^2? Where is this birational automorphism regular?

(v) More generally, show that $GL_2(\mathbb{Z})$ is a subgroup of the Cremona group.

Answer: (i) Clearly, \mathbb{A}^n is birational to \mathbb{P}^n, hence

$$K(\mathbb{P}^n) \cong K(\mathbb{A}^n) \cong k(t_1, \ldots, t_n).$$

Thus X is rational iff

$$K(X) \cong k(t_1, \ldots, t_n).$$

(ii) Let $U \subset \mathbb{P}^n$ be the open set where the coordinate $x_0 \neq 0$. Similarly, let $V \subset \mathbb{P}^m$ be the open set where the coordinate $y_0 \neq 0$, and let W be the open set in \mathbb{P}^{n+m} where the first coordinate is non-zero. Define $\phi : U \times V \to \mathbb{P}^{n+m}$ as

$$[x_0 : x_1 : \ldots : x_n] \times [y_0 : y_1 : \ldots : y_m] \mapsto \left[1 : \frac{x_1}{x_0} : \frac{x_2}{x_0} : \ldots : \frac{x_n}{x_0} : \frac{y_1}{y_0} : \frac{y_2}{y_0} : \ldots : \frac{y_m}{y_0}\right].$$

It is easy to check that ϕ establishes an isomorphism between $U \times V$ and W, with inverse

$$\psi : W \to U \times V, [1 : z_1 : \ldots : z_{n+m}] \to [1 : z_1 : \ldots : z_n] \times [1 : z_{n+1} : \ldots : z_{n+m}].$$

Therefore ϕ and ψ define birational isomorphisms between $\mathbb{P}^n \times \mathbb{P}^m$ and \mathbb{P}^{n+m}. Finally, if X and Y are birational to \mathbb{P}^n and \mathbb{P}^m, then $X \times Y$ is birational to $\mathbb{P}^n \times \mathbb{P}^m$ which in turn is birational to \mathbb{P}^{n+m}. Therefore, $X \times Y$ is rational.

(iii) Two closed subsets $\{a\} \times \mathbb{P}^1$ and $\{b\} \times \mathbb{P}^1$ in $\mathbb{P}^1 \times \mathbb{P}^1$ have nonempty intersection. This is false in \mathbb{P}^2 by problem 1(iii). Hence \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ cannot be isomorphic.

(iv) We explained in (i) that

$$K(\mathbb{P}^2) = k(x, y)$$

hence any automorphism of $k(x, y)$ corresponds to an automorphism of $K(\mathbb{P}^2)$ which in turn gives a birational isomorphism of \mathbb{P}^2. The involution

$$(x, y) \mapsto (x^{-1}, y^{-1})$$
corresponds to the birational map

$$f[x : y : z] = [x^{-1} : y^{-1} : z^{-1}].$$

This map is regular on $\mathbb{P}^2 \setminus \{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]\}$. Indeed, to show that the map is regular at the points where $(x, y) \neq (0, 0)$, we rewrite it in the form

$$f[x : y : z] = \left[\frac{z}{x} : \frac{z}{y} : 1\right].$$
(v) The automorphism
\[(x, y) \rightarrow (x^a y^b, x^c y^d)\]
where
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})
\]
belongs to the Cremona group. Its inverse is
\[(x, y) \rightarrow (x^{a'} y^{b'}, x^{c'} y^{d'})\]
where
\[
\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}
\]
is the inverse of the matrix above.

\[\square\]

Problem 6. *(Quadrics are rational.)* Show that any non-degenerate irreducible quadric \(Q \subset \mathbb{P}^{n+1}\) is birational to \(\mathbb{P}^n\).

Answer: All nondegenerate quadrics are isomorphic as seen in class. We can assume that the quadric \(Q\) is defined by
\[x_0 x_1 - x_2^2 - x_3^2 - \ldots - x_n^2 = 0.\]

Pick the point \(p = [1 : 0 : \ldots : 0] \in Q\), and let \(H\) be the hyperplane \(X_0 = 0\).

The line passing through \(p = [1 : 0 : \ldots : 0]\) and \(q = [x_0 : \ldots : x_n]\) is
\[[r + sx_0 : sx_1 : \ldots : sx_n].\]

This line intersects the hyperplane \(H\) when \(r + sx_0 = 0\). Therefore the line intersects \(H\) at \([0 : sx_1 : \ldots : sx_n] = [0 : x_1 : \ldots : x_n].\) This may be undefined when \(x_1 = x_2 = \ldots = x_n = 0\), i.e. when \(q = p\). We obtain a morphism
\[f : Q \setminus \{p\} \rightarrow H, \ [x_0 : x_1 : \ldots : x_n] \rightarrow [0 : x_1 : \ldots : x_n].\]

The rational inverse of \(f\) is given by
\[g : H \rightarrow Q, \ [x_1 : x_2 : \ldots : x_n] = \left[\frac{x_2^2 + \cdots x_n^2}{x_1} : x_1 : x_2 : \ldots : x_n\right].\]

This may be undefined at the points where \(x_1 = 0\).

Since \(f\) has a rational inverse, \(Q\) is birational to \(H\).