Math 203, Problem Set 4. Due Friday, May 18.

1. (Tensor products.)

If E, F are two rank 2 vector bundles, compute the Chern classes of $E \otimes F$ in terms of the Chern classes of E, F.
2. (Lines on the intersection of two quadrics.)

Let X be the smooth intersection of two quadrics in \mathbb{P}^{4}. Show that the expected number of lines in X, counted with multiplicity, equals 16 .

Hint: There are (at least) two ways of solving this problem, and I encourage you to try both. One way is via a Chern class calculation as we did in class for the 27 lines on the cubic surface.

You can also approach this problem by first finding a basis for the Chow group of the Grassmannian $G\left(1, \mathbb{P}^{4}\right)$ via a cellular decomposition. Consider the cycle of lines lying on a quadric. Express this cycle in terms of the basis you found above, possibly by intersecting with complementary subvarieties. Conclude.

Remark: In fact, just as for the cubic surface, the geometry can be made more precise. A smooth intersection of two quadrics in \mathbb{P}^{4} is a del Pezzo surface of degree 4 (that is, X is a smooth projective surface with K_{X}^{\vee} ample and $K_{X}^{2}=4$.) It can be shown that all such del Pezzo surfaces be realized as a blowup of \mathbb{P}^{2} at 5 general points. Assuming this description, can you figure out what the 16 lines are?

3. (Lines on the quintic threefold.)

Show that the expected number of lines on a quintic threefold in \mathbb{P}^{4} is 2,875 .
Remark: Clemens conjectured that the number of rational curves of a given degree on a general quintic threefold is finite. (Some smooth but non-generic quintic threefolds have infinite families of lines on them.)

Let n_{d} be the expected number of degree d rational curves on a quintic threefold. (A rigorous definition requires Gromov-Witten theory.) The genus 0 mirror theorem gives the formula for n_{d}. It takes the form

$$
5+\sum_{d} n_{d} \cdot d^{3} \cdot \frac{q^{d}}{1-q^{d}}=\frac{5}{1+5^{5} x \cdot I_{0}(x)} \cdot\left(\frac{x}{q} \cdot \frac{d x}{d q}\right)^{3} .
$$

The variables x and q are related by the so-called mirror map. Specifically

$$
q=\exp \left(\frac{I_{1}(x)}{I_{0}(x)}\right)
$$

where

$$
\begin{gathered}
I_{0}(x)=\sum_{n} \frac{(5 n)!}{(n!)^{5}}(-x)^{n} \\
I_{1}(x)=I_{0}(x) \log (-x)+5 \sum \frac{(5 n)!}{(n!)^{5}}\left(\sum_{j=n+1}^{5 n} \frac{1}{j}\right) \cdot(-x)^{n} .
\end{gathered}
$$

The right hand side is explicit, so this provides an explicit formula for n_{d}. In particular

$$
n_{1}=2,875, \quad n_{2}=609,250, \quad n_{3}=317,206,375, \quad n_{4}=242,467,530,000 \ldots
$$

Needless to say, a proper explanation for the mysterious appearance of the hypergeometric series in the expression above is more involved.

4. (Chow groups of projective bundles.)

Let $E \rightarrow X$ be a rank r vector bundle and let

$$
p: \mathbb{P}(E) \rightarrow X .
$$

Let $\zeta=c_{1}\left(\mathcal{O}_{\mathbb{P}(E)}(1)\right)$ be the Chern class of the tautological line bundle over $\mathbb{P}(E)$. Show that

$$
\zeta^{r}+\zeta^{r-1} \cdot p^{\star} c_{1}(E)+\ldots+p^{\star} c_{r}(E)=0
$$

in $A_{\star}(\mathbb{P}(E))$.
Hint: The vector bundle $\mathcal{O}_{\mathbb{P}(E)}(1) \otimes p^{\star} E$ has a natural section, hence using Whitney formula or an equivalent arguement, its top Chern class must vanish

$$
c_{r}\left(\mathcal{O}_{\mathbb{P}(E)}(1) \otimes p^{\star} E\right)=0 .
$$

5. (Conics intersecting 8 lines.)

Given 8 lines $L_{1}, \ldots L_{8}$ in \mathbb{P}^{3} show the expected number of plane conics in \mathbb{P}^{3} that intersect all L_{i} equals 92 .

Hint: Let $X=\left(\mathbb{P}^{3}\right)^{\star}$ denote the dual projective space parametrizing planes in \mathbb{P}^{3} and let

$$
0 \rightarrow \mathcal{S} \rightarrow \mathcal{O}_{X} \otimes \mathbb{C}^{4} \rightarrow \mathcal{O}_{X}(1) \rightarrow 0
$$

denote the tautological sequence. Convince yourselves that the space of plane conics in \mathbb{P}^{3} is

$$
\mathbb{H}=\mathbb{P}\left(\operatorname{Sym}^{2} \mathcal{S}^{\vee}\right) \rightarrow X .
$$

This corresponds to the fact that one needs to pick a plane in \mathbb{P}^{3}, and for each plane, there is a \mathbb{P}^{5}-worth of conics in that plane, corresponding to a quadratic equation up to scaling.

There are (at least) two ways to carry out the calculation, but if you wish you can follow the steps below:
(i) Using Problem 4, find the Chow of this projective bundle $\mathbb{H} \rightarrow X$. You should find two generators ζ and τ corresponding to the Chern classes of $\mathcal{O}_{\mathbb{H}}(1)$ and $\mathcal{O}_{X}(1)$. There should also be one relation which you should write explicitly.
(ii) Show that the divisor δ of conics intersecting a line is

$$
\delta=\zeta+2 \tau .
$$

Further hint: By (i), write

$$
\delta=a \zeta+b \tau
$$

To show

$$
a=1, b=2,
$$

intersect δ with suitably chosen test curves. That is, consider a one-parameter family of conics

$$
C_{t} \subset \mathbb{P}^{3}
$$

parametrized by $t \in T$. Such a family determines a curve in the space of conics

$$
T \rightarrow \mathbb{H}, \quad t \mapsto\left[C_{t}\right] .
$$

Compute $T \cdot \delta$.
For instance, you can intersect with the following one-parameter families:

- a one-parameter family of conics $C_{t}, t \in \mathbb{P}^{1}$ that are contained in a general plane H in \mathbb{P}^{3}. Show that

$$
T \cdot \delta=1,, \quad T \cdot \zeta=1, \quad T \cdot \tau=0
$$

- a one-parameter family of conics of the form

$$
C_{t}=H_{t} \cap Q
$$

where $H_{t}, t \in \mathbb{P}^{1}$ is a varying plane in \mathbb{P}^{3}, and Q is a fixed quadric. Show that

$$
T \cdot \delta=2, \quad T \cdot \zeta=0, \quad T \cdot \tau=1
$$

You will need to compute intersections with both families since you need to find two coefficients a, b.
(iii) Show that $\delta^{8}=92$. You may wish to begin observing that

$$
\zeta^{5} \tau^{3}=1(\text { why } ?)
$$

and use Problem 4 to compute that

$$
\zeta^{6} \tau^{2}=-4, \quad \zeta^{7} \tau=6, \quad \zeta^{8}=-4
$$

