Math 203, Problem Set 5. Due Wednesday, May 31.

1. (HRR for surfaces.) Let X be a smooth projective surface, and let $L \rightarrow X$ be a line bundle. HRR states

$$
\chi(X, L)=\chi\left(X, \mathcal{O}_{X}\right)+\frac{L \cdot\left(L-K_{X}\right)}{2}
$$

In this problem, we verify HRR directly.
(i) Assume $L=\mathcal{O}_{X}(C)$ where C is a smooth curve on X. Use the exact sequence

$$
\left.0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(C) \rightarrow \mathcal{O}_{X}(C)\right|_{C} \rightarrow 0
$$

to show that

$$
\chi(X, L)=\chi\left(X, \mathcal{O}_{X}\right)+\chi\left(\left.\mathcal{O}_{X}(C)\right|_{C}\right)
$$

Use Riemann-Roch for the curve C and the line bundle $\left.\mathcal{O}_{X}(C)\right|_{C}$ to show that

$$
\chi\left(\left.\mathcal{O}_{X}(C)\right|_{C}\right)=1-g_{C}+C^{2}
$$

Use the genus formula to find g_{C} in terms of C and K_{X}. Substitute and confirm HRR in this case.
(ii) Carry out the same argument for $L=\mathcal{O}_{X}(C-D)$, when C, D are smooth curves on X.

It can be shown (Hartshorne, Ch V, Section 1) that any line bundle $L \rightarrow X$ can be written in this form, so this establishes HRR for all line bundles over surfaces.

Hint: Use the following exact sequences

$$
\begin{aligned}
& 0 \rightarrow\left.\mathcal{O}_{X}(C-D) \rightarrow \mathcal{O}_{X}(C) \rightarrow \mathcal{O}_{X}(C)\right|_{D} \rightarrow 0 \\
&\left.0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(C) \rightarrow \mathcal{O}_{X}(C)\right|_{C} \rightarrow 0
\end{aligned}
$$

2. (HRR for threefolds.) Let X be a smooth projective 3-fold.
(i) Use HRR to show that

$$
\chi\left(\mathcal{O}_{X}\right)=\frac{1}{24} \int_{X} c_{1}(X) c_{2}(X)
$$

(This is the threefold equivalent of Noether's formula for surfaces obtaiend in class.) Furthermore, verify that $\int_{X} c_{1}(X) c_{2}(X)$ is indeed divisible by 24 when $X=\mathbb{P}^{3}$.
(ii) More generally, use HRR to obtain a formula for $\chi\left(X, \mathcal{O}_{X}(D)\right)$ when D is a divisor over X.
(iii) If E is a rank 2 vector bundle over \mathbb{P}^{3}, use HRR to show that

$$
\int_{X} c_{1}(E) c_{2}(E) \text { is even. }
$$

3. (Practice with GRR.) Let $L \rightarrow C$ be a line bundle over a smooth curve, and

$$
X=\mathbb{P}\left(\mathcal{O}_{C} \oplus L\right) \rightarrow C
$$

be the corresponding ruled surface. Let $\mathcal{O}_{\mathbb{P}}(1)$ denote the tautological bundle over the projective bundle $X=\mathbb{P}\left(\mathcal{O}_{C} \oplus L\right) \rightarrow C$.
(i) Explain that for $k \geq 0$ we have

$$
\pi_{\star} \mathcal{O}_{\mathbb{P}}(k)=\oplus_{i=0}^{k} L^{-i}
$$

(ii) Use GRR to find the Chern character of $\pi_{\star} \mathcal{O}_{\mathbb{P}}(k)$ and verify that it is in agreement with the calculation in (i). That is, show that

$$
\operatorname{ch}\left(\pi_{\star} \mathcal{O}_{\mathbb{P}}(k)\right) \cdot \operatorname{td}(C)=\pi_{\star}\left(\operatorname{ch} \mathcal{O}_{\mathbb{P}}(k) \cdot \operatorname{td}(X)\right) .
$$

4. (K-theory of projective spaces.) Show that

$$
K\left(\mathbb{P}^{n}\right)=\mathbb{Z}[t] /(t-1)^{n+1}
$$

where t corresponds to the line bundle $\mathcal{O}_{\mathbb{P}^{n}}(1)$.
Hint: Use resolutions of coherent sheaves to show that t generates. To show that the relation $(t-1)^{n+1}=0$ holds, you may need to work with the Koszul complex of the vector bundle $\oplus_{i=0}^{n} \mathcal{O}_{\mathbb{P}^{n}}(1)$. To show that no other relations exist, reduce the degree to be less than $n+1$. Assuming

$$
\sum_{i=0}^{n} a_{i} t^{i}=0
$$

multiply by t^{m} for any m, and apply the Euler characteristic χ to both sides, regarding the answer as a polynomial in m. Examine this polynomial and show $a_{i}=0$.

The last problem is optional. There are several hints to help you go through the argument by yourselves. If you get stuck, you can also consult Borel-Serre's RiemannRoch paper.
5. (Excision.) If U is an open subset of an algebraic variety X, and $Y=X \backslash U$, then

$$
K_{\circ}(Y) \rightarrow K_{\circ}(X) \rightarrow K_{\circ}(U) \rightarrow 0 .
$$

Strategy: We will prove this in 5 steps. Steps (i)-(iv) prove exactness on the right. They establish general extension properties of coherent sheaves (from U to X). Step (v) proves exactness in the middle.

Steps (i)-(iv) build on one another. The strategy can be summarized as follows: - extension of subsheaves of a given sheaf that has already been extended;

- extension of globally generated sheaves;
- extensions of sheaves over affine varieties;
- extension of sheaves in the general case.
(i) If \mathcal{A} is a coherent sheaf on X and \mathcal{F} is a coherent sheaf on U, such that \mathcal{F} is a subsheaf of $\left.\mathcal{A}\right|_{U}$, then one can extend \mathcal{F} to a coherent sheaf \mathcal{F}^{\prime} over X such that \mathcal{F}^{\prime} is a subsheaf of \mathcal{A}.

Hint: Consider $\mathcal{F}^{\prime}(W)$ to be the set of sections of $\mathcal{A}(W)$ whose restrictions to $U \cap W$ are in $\mathcal{F}(U \cap W)$.

Now, the sheaf \mathcal{A} may not exist, so we seek to remove it from our hypotheses.
(ii) If $\mathcal{F} \rightarrow U$ is a coherent sheaf over U generated by global sections, then there exists an extension \mathcal{F}^{\prime} of \mathcal{F} to X.

Hint: Write $\mathcal{F}=\mathcal{O}_{U}^{\oplus r} / \mathcal{K}$ with \mathcal{K} a subsheaf of $\mathcal{O}_{U}^{\oplus r}$. Use (i) to extend \mathcal{K} to X, and thus also \mathcal{F}.
(iii) Assume X is affine. If $\mathcal{F} \rightarrow U$ is a coherent sheaf over U, then there exists an extension \mathcal{F}^{\prime} of \mathcal{F} to X.

Hint: By (ii), it suffices to show that \mathcal{F} is generated by global sections on U. To see this, take a principal affine open sets contained in $X_{g} \subset U$, and extend sections of $\left.\mathcal{F}\right|_{X_{g}}$ to U possibly after multiplying by powers of g. This should follow using only techniques from Math 203b.
(iv) Show that the statement in (iii) holds without the assumption X affine. This implies that the excision sequence is exact on the right.

Hint: Show that \mathcal{F} extends to some open V strictly containing U. This process will then end since open sets eventually stabilize. To find V, let W be an affine neighborhood of $x \in X \backslash U$, set $V=W \cup U$. Extend $\left.\mathcal{F}\right|_{W \cap U}$ to a sheaf over W using (iii).
(v) Prove the excision sequence.

Hint: For exactness in the middle, you need to show that if \mathcal{F} is extended to X in two different ways \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$, then $\left[\mathcal{F}^{\prime}\right]-\left[\mathcal{F}^{\prime \prime}\right]$ comes from $K(Y)$.

Assume first there exists a morphism $f: \mathcal{F}^{\prime} \rightarrow \mathcal{F}^{\prime \prime}$ between the extensions. Look at the kernel and cokernel of f to conclude. To this end, you may wish to note that if \mathcal{G} is a sheaf which is zero on U then $\mathcal{I}^{n} \mathcal{G}=0$ where \mathcal{I} is the ideal of Y in X (to see this, work affine locally). Construct filtrations of \mathcal{G} whose succesive quotients are annihlated by \mathcal{I}, and conclude they come from Y.

In general, compare \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$ to $\mathcal{F}^{\prime} \oplus \mathcal{F}^{\prime \prime}$ to reduce to the case already analyzed.

