Math 203, Problem Set 1. Due Friday, April 12.

1. (Riemann-Roch in higher rank - can be solved on Wednesday, April 3.) Show that if X is a smooth projective curve and $E \rightarrow X$ is a rank r vector bundle, then

$$
\chi(X, E)=r \chi\left(X, \mathcal{O}_{X}\right)+\operatorname{deg}\left(\Lambda^{r} E\right) .
$$

(i) Show that the above Riemann-Roch formula holds for E if and only if it also holds for $E \otimes \mathcal{O}(p)$. Conclude that the same is true for $E \otimes L$ where L is any line bundle.
(ii) Using (i) and Serre's theorem, show that it suffices to assume E admits a section. That is, in part (i) show that if L is suitably chosen, then $E \otimes L$ has a section.
(iii) If E has a section, let F be the sheaf given by

$$
0 \rightarrow \mathcal{O} \rightarrow E \rightarrow F \rightarrow 0 .
$$

Assume first that F is locally free. Obtain the Riemann Roch formula by induction on the rank.
(iv) If F is not locally free, let T denote the torsion part of F, and let $\tilde{F}=F / T$. Consider the natural map

$$
E \rightarrow F \rightarrow \tilde{F} \rightarrow 0
$$

and let K denote its kernel. Show that K and \tilde{F} are both locally free. Conclude the Riemann-Roch formula for E by induction on the rank.
2. (Gonality - Wednesday, April 3.) Let X be a smooth projective curve of genus g, and let $p \in X$. Show that there exists a surjective morphism $f: X \rightarrow \mathbb{P}^{1}$ of degree at most $g+1$.

Hint: Construct f as a section of $\mathcal{O}_{X}((g+1) p)$. To show that such an f exists, use Riemann-Roch.

Remark: The smallest degree of a nonconstant morphism $f: X \rightarrow \mathbb{P}^{1}$ is called the gonality of the curve. Thus

$$
\text { gon }(X) \leq g+1
$$

Most curves of genus g have gonality roughly $\frac{g+3}{2}$, but other values are also possible:

- Gonality 1 means $X=\mathbb{P}^{1}$.
- Curves of gonality 2 admit a degree 2 morphism

$$
f: X \rightarrow \mathbb{P}^{1}
$$

These are termed hyperelliptic curves (if $g \geq 2$).

- Trigonal curves admit a degree 3 morphism $f: X \rightarrow \mathbb{P}^{1}$.

3. (Hyperelliptic curves - Friday, April 5.)

(i) Let Z be a smooth projective hyperelliptic curve of genus $g \geq 2$ (i.e. a curve of gonality 2). Show that any morphism

$$
f: Z \rightarrow \mathbb{P}^{1}
$$

of degree 2 has $2 g+2$ ramification points $a_{1}, \ldots, a_{2 g+2}$.
(ii) Let $X \subset \mathbb{A}^{2}$ be the hyperelliptic curve

$$
y^{2}=\left(x-a_{1}\right) \cdot \ldots \cdot\left(x-a_{2 g+2}\right) .
$$

Let Y be the curve

$$
w^{2}=\left(1-z a_{1}\right) \cdots\left(1-z a_{2 g+2}\right) .
$$

Clearly

$$
(x, y) \mapsto\left(\frac{1}{x}, \frac{y}{x^{g+1}}\right)
$$

is an isomorphism between X and Y away from $x \neq 0$. Let Z denote the variety obtained by gluing X and Y along this isomorphism. Now, Z turns out to be a smooth projective curve. (Smoothness was checked in Math 203a, PSet 7; projectivity requires an argument, but this is not asked for here.)

Prove that there exists a degree 2 morphism $f: Z \rightarrow \mathbb{P}^{1}$ which is ramified at $2 g+2$ points. Conclude that the hyperelliptic curve Z has genus g.
(iii) Show that $x^{i} \frac{d x}{y}, 0 \leq i \leq g-1$ is a basis for $H^{0}\left(Z, K_{Z}\right)$.

Hint: You will have to show that $\omega_{i}=x^{i} \frac{d x}{y}$ is regular on X. The only issues are extending ω_{i} across the points a_{j}. To do so, you may wish to rewrite this form using the identity

$$
y^{2}=\left(x-a_{1}\right) \cdot \ldots \cdot\left(x-a_{2 g+2}\right) .
$$

You will also need to check that ω_{i} is regular on Y.
4. (Genus 2 curves - hopefully, Wednesday, April 10.) Let X be a smooth projective genus 2 curve.
(i) Show that X is hyperelliptic.

Hint: Using Riemann-Roch and Serre duality, show that K_{X} is globally generated. Show that $\left|K_{X}\right|$ induces a morphism $f: X \rightarrow \mathbb{P}^{1}$ of degree 2.
(ii) Show that X can be exhibited as a degree 5 curve in \mathbb{P}^{3}.
(iii) We have seen that genus 1 curves are cubics in \mathbb{P}^{2}. By contrast, show that a genus 2 curve can never be a complete intersection in any projective space.

Hint: Compute the canonical bundle of X, and show K_{X} is not very ample using (i).

