## Math 203, Problem Set 2. Due Monday, April 22.

1. (Examples of flat morphisms.)
(i) Give an example of a flat morphism $f: X \rightarrow T$ such that $f^{-1}(t)$ is irreducible for all $t \neq t_{0}$, while $f^{-1}\left(t_{0}\right)$ is not irreducible.
(ii) Give an example of a flat morphism $f: X \rightarrow T$ such that $f^{-1}(t)$ is reduced for all $t \neq t_{0}$, while $f^{-1}\left(t_{0}\right)$ is not reduced.
2. (Flatness and pullbacks.) Assume $f: X \rightarrow Y$ is a flat morphism. Show that exact sequences of coherent sheaves on $Y$ are still exact on $X$ after pull back.
3. (Base-change and flatness.)
(i) Show that if $M$ is an $A$-flat module, and $B$ is $A$-algebra, then $M \otimes_{A} B$ is $B$-flat.
(ii) Show that flatness $f: X \rightarrow Y$ is preserved under base-change by a morphism $g: Y^{\prime} \rightarrow Y$.
4. (Flatness and sections.)
(i) Show that if $M$ is $B$-flat and $B$ is a flat $A$-algebra, then $M$ is $A$-flat.
(ii) Let $A$ be a $B$-algebra, and let $M$ be $A$-module. Show that $M$ is $B$-flat iff $M_{\mathfrak{p}}$ is $B$-flat for all primes $\mathfrak{p}$ in $A$.
(iii) Let $f: X \rightarrow Y$ be flat and $U \subset X$ and $V \subset Y$ are affine open sets with $U \subset f^{-1}(V)$. Show the flatness of the homomorphism

$$
\mathcal{O}_{Y}(V) \rightarrow \mathcal{O}_{X}(U)
$$

Thus $f: \operatorname{Spec} A \rightarrow \operatorname{Spec} B$ is flat iff $f^{\star}: B \rightarrow A$ is flat.
5. (Flatness over PID, DVR, dual numbers.)
(i) Show that if $A$ is a PID, then $M$ if $A$-flat iff $M$ is torsion free.
(ii) Show that if $A$ is a DVR with local parameter $t$, then $M$ is $A$-flat iff $t$ is not a zero divisor on $M$.
(iii) Let $D=k[\epsilon] /\left(\epsilon^{2}\right)$. Show that $M$ is $D$-flat iff the multiplication by $\epsilon: M / \epsilon M \rightarrow$ $\epsilon M$ is injective. This is important in deformation theory.
6. (Example of a non-flat morphism.) Let

$$
X=\operatorname{Spec} k[x, y, z, w] /(x z, y z, x w, y w)
$$

be the union of the $(x y)$-plane and $(z w)$-plane in $\mathbb{A}^{4}$. Let

$$
\pi: X \rightarrow \mathbb{A}^{2}
$$

be given by

$$
k[s, t] \rightarrow k[x, y, z, w] /(x z, y z, x w, y w), \quad s \rightarrow x+z, t \mapsto y+w
$$

Show that $\pi$ is not flat. You may wish to check the definition directly.
Geometrically, $X$ is a union of two planes intersecting at a point, and $\pi$ maps these planes isomorphically onto $\mathbb{A}^{2}$. This example should be contrasted with the criterion for flatness discussed in class when the base is a smooth curve.

The final question is optional.
7. (Some deformation theory. The Hilbert "scheme".)

Let

$$
\mathcal{F}:(S c h) \rightarrow(S e t)
$$

be a contravariant functor between the category of schemes and the category of sets.
Let $X$ be an element of the set $\mathcal{F}$ (Spec $k$ ). The tangent space of $\mathcal{F}$ at $X$ is by definition the fiber over $X$ of the natural map

$$
\mathcal{F}(\mathbb{D}) \rightarrow \mathcal{F}(\operatorname{Spec} k) .
$$

Here $\mathbb{D}=\operatorname{Spec} k[\epsilon] /\left(\epsilon^{2}\right)$.
(i) Let $X$ be a variety over $k$. Recall that in the first few lectures of Math 203b we have defined the functor of points

$$
h_{X}:(S c h) \rightarrow(S e t), \quad S \mapsto \operatorname{Mor}(S, X) .
$$

Note that $h_{X}(\operatorname{Spec} k)=X(k)$. Show that the tangent space of the functor $h_{X}$ at the point $p \in X$ coincides with the Zariski tangent space $T_{X, p}$. This should be immediate provided you solved an older homework in Math 203b.
(ii) The Hilbert functor

$$
\mathcal{H}:(S c h) \rightarrow(\text { Sets })
$$

is defined by assigning to each scheme $S$, flat families

$$
\pi: \mathcal{X} \rightarrow S, \quad \mathcal{X} \subset S \times \mathbb{P}^{r}
$$

up to isomorphism of $S$-schemes. Using problem 3(ii), convince yourself that $\mathcal{H}$ is a contravariant functor.
(iii) If $X \subset \mathbb{P}^{r}$, then the tangent space of the Hilbert functor at $X$ is $\operatorname{Hom}_{\mathbb{P}^{r}}\left(\mathcal{I}_{X}, \mathcal{O}_{X}\right)$. This tangent space parametrizes infinistesimal deformations of $X$ inside $\mathbb{P}^{r}$ i.e. $\mathbb{D}$-flat families

$$
\mathcal{X} \rightarrow \mathbb{D}, \quad \mathcal{X} \subset \mathbb{P}^{r} \times \mathbb{D},
$$

which restrict to $X$.

Hint: You should first treat the affine case, then glue. For the affine case, the problem can be rephrased as follows: given an ideal

$$
\mathfrak{i} \subset A
$$

find an ideal

$$
\mathfrak{i}^{\prime} \subset A^{\prime}:=A[\epsilon] /\left(\epsilon^{2}\right)
$$

with $A^{\prime} / \mathfrak{i}^{\prime}$ flat over $D$, such that

$$
A^{\prime} / \mathfrak{i}^{\prime} \otimes_{D} k=A / \mathfrak{i} .
$$

Show these ideals are classified by $\operatorname{Hom}_{A}(\mathfrak{i}, A / \mathfrak{i})$. To this end, the criterion of flatness in Problem 5 gives the exactness of

$$
0 \rightarrow A / \mathfrak{i} \rightarrow{ }^{\times \epsilon} A^{\prime} / \mathfrak{i}^{\prime} \rightarrow A / \mathfrak{i} \rightarrow 0
$$

Use this as a first row of a natural square diagram and diagram chase.
If you get suck, you can look this up in Hartshorne's deformation theory, but do write up your own solution.
(iii) In particular, if $X$ is smooth, the tangent space can be expressed as

$$
\operatorname{Hom}_{\mathbb{P}^{r}}\left(\mathcal{I}_{X}, \mathcal{O}_{X}\right)=\operatorname{Hom}_{X}\left(\mathcal{I}_{X} / I_{X}^{2}, \mathcal{O}_{X}\right)=\operatorname{Hom}_{X}\left(N_{X / \mathbb{P}^{r}}^{\vee}, \mathcal{O}_{X}\right)=H^{0}\left(X, N_{X / \mathbb{P}^{r}}\right)
$$

This is of course quite suggestive if you draw a picture.
It is a difficult result that the Hilbert functor is the functor of points of a certain scheme, called the Hilbert scheme. The above calculation therefore gives the tangent space to the Hilbert scheme, and it is useful to get an upper bound on the dimension.

