Math 203, Problem Set 1. Due Friday, January 19.

1. (Distinguished open sets.) Let $X=\operatorname{Spec}(A)$ be an affine scheme. For each $f \in A$, recall the basic open sets

$$
X_{f}=\{\mathfrak{p} \in X: f \notin \mathfrak{p}\} .
$$

Show that
(i) $X_{f} \subset X_{g}$ iff $\sqrt{(f)} \subset \sqrt{(g)}$. In particular,

$$
X_{f}=\emptyset \Longleftrightarrow f \text { is nilpotent }
$$

and

$$
X_{f}=X \Longleftrightarrow f \text { is a unit. }
$$

(ii) Show that X is quasi-compact i.e. any cover by open subsets admits a finite subcover. More generally, each X_{f} is quasi-compact.
2. (Specialization and generization. Generic points.) Given two points x, y of a topological space X , we say that x is a specialization of y, and y is a generization of x, if $x \in \overline{\{y\}}$.

A related notion is that of generic points: if Y is a closed subset of X, we say η_{Y} is a generic point of Y if $\overline{\left\{\eta_{Y}\right\}}=Y$.
(i) If $X=\operatorname{Spec}(A)$, show that \mathfrak{q} is a specialization of \mathfrak{p} if and only if $\mathfrak{p} \subset \mathfrak{q}$. Hence show that

$$
\overline{\{\mathfrak{p}\}}=Z(\mathfrak{p})=\{\mathfrak{q}: \mathfrak{p} \subset \mathfrak{q}\} .
$$

Show that the closed points \mathfrak{p} of X correspond to the maximal ideals of A.
(ii) Assume that $X=\operatorname{Spec}(A)$ is an affine scheme. Show that any nonempty irreducible closed subset $Y \subset X$ admits a unique generic point η_{Y}.
3. (Stalks over generic points.) Let X be an affine scheme, and let Y be an irreducible closed subset of X. If η_{Y} is the generic point of Y, we write $\mathcal{O}_{X, Y}$ for the stalk $\mathcal{O}_{X, \eta_{Y}}$.

Show that $\mathcal{O}_{X, Y}$ is "the ring of rational functions on X that are regular at a general point of Y ", i.e. it is isomorphic to the ring of equivalence classes of pairs (U, ϕ), where $U \subset X$ is open with $U \cap Y \neq \emptyset$ and $\phi \in \mathcal{O}_{X}(U)$. Two such pairs (U, ϕ) and $\left(U^{\prime}, \phi^{\prime}\right)$ are called equivalent if there is an open subset $V \subset U \cap U^{\prime}$ with $V \cap Y \neq \emptyset$ such that $\left.\phi\right|_{V}=\phi_{V}^{\prime}$.

In particular, if X is a scheme that is a variety, then $\mathcal{O}_{X, \eta_{X}}$ is the function field of X.
4. (Morphisms of affine schemes.) Let $f: A \rightarrow B$ be a morphism of rings, and let $X=\operatorname{Spec}(A), Y=\operatorname{Spec}(B)$. If \mathfrak{q} is a point of Y, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A hence a point of X. Therefore, we have a well-defined morphism

$$
f^{\star}: \underset{1}{Y} \rightarrow X
$$

(i) Show that f^{\star} is continuous.
(ii) If f is surjective with kernel $\operatorname{Ker}(f) \subset A$, show that f^{\star} is homeomorphism of Y onto the closed subset $Z(\operatorname{Ker}(f))$ of X. In particular, show that $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A / \mathfrak{n})$ are homeomorphic, where \mathfrak{n} is the nilradical of A.
(iii) If f is injective, show that f^{\star} is dominant. More precisely, the image $f^{\star}(Y)$ is dense in X iff $\operatorname{Ker}(f) \subset \mathfrak{n}$.
5. A field extension $K \subset L$ induces a morphism

$$
\mathbb{A}_{L}^{n} \rightarrow \mathbb{A}_{K}^{n} .
$$

We consider the case $K=\mathbb{Q}$ and $L=\overline{\mathbb{Q}}$. Consider the following points in $\mathbb{A}_{\mathbb{Q}}^{2}$:
(i) $(\sqrt{2}, \sqrt{2})$;
(ii) $(\sqrt{2}, \sqrt{3})$;
(iii) $(x \sqrt{2}-y \sqrt{3})$.

What are the images of these points in $\mathbb{A}_{\mathbb{Q}}^{2}$ under the map $\mathbb{A}_{\mathbb{Q}}^{2} \rightarrow \mathbb{A}_{\mathbb{Q}}^{2}$?
6. Consider the natural morphism

$$
\operatorname{Spec}(\mathbb{Z}[\sqrt{3}]) \rightarrow \operatorname{Spec}(\mathbb{Z}) .
$$

What are the fibers over a prime (p) in $\operatorname{Spec}(\mathbb{Z})$? You may wish to discuss the following cases:
(i) $p=2$ or $p=3$;
(ii) the case when -3 is a quadratic residue $\bmod p$;
(iii) the case when -3 is not a quadratic residue $\bmod p$.

Use this to "draw" a picture of $\operatorname{Spec}(\mathbb{Z}[\sqrt{3}])$.
7. Let $f(x, y)=y^{2}-x^{2}-x^{3}$. Describe the affine scheme $X=\operatorname{Spec} A /(f)$ settheoretically for the following rings A :
(i) $A=\mathbb{C}[x, y]$ (the standard polynomial ring),
(ii) $A=\mathbb{C}[x, y]_{(x, y)}$ (the localization of the polynomial ring at the origin),
(iii) $A=\mathbb{C}[[x, y]]$ (the ring of formal power series).

Interpret the results geometrically. In which of the three cases is X irreducible?
8. For each of these cases below give an example of an affine scheme X with that property, or prove that such an X does not exist:
(i) X has infinitely many points, and $\operatorname{dim} X=0$;
(ii) X has exactly one point, and $\operatorname{dim} X=1$;
(iii) X has exactly two points, and $\operatorname{dim} X=1$;
(iv) $X=\operatorname{Spec} A$ with $A \subset \mathbb{C}[x]$, and $\operatorname{dim} X=2$.

