Math 203, Problem Set 4. Due Friday, February 16.

1. (Quasi-coherent sheaves.) Show that quasi-coherence is affine-local on the target.

Hint: This can be proved in the same way as Problem 8 of the previous problem set. If you get stuck, you can also find a proof in Hartshorne or in Ravi Vakil's notes.

2. (Coherent sheaves.) Let X be a Noetherian scheme. Show that a sheaf \mathcal{F} of \mathcal{O}_X modules is coherent if and only if every point of X has a neighborhood U, such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of free sheaves of finite rank on U.

3. (Vector bundles over affine schemes.)

- (i) Show that every locally free sheaf of finite rank over \mathbb{A}^1_k is free.
- (ii) True or false: any locally free sheaf on an affine scheme is free.

4. (Projection formula.) Let $f : X \to Y$ be a morphism of schemes and \mathcal{E} a locally free sheaf of finite rank over Y, and \mathcal{F} a sheaf of \mathcal{O}_X -modules. Show that

$$f_{\star}(f^{\star}\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F}) = \mathcal{E} \otimes_{\mathcal{O}_Y} f_{\star}\mathcal{F}.$$

5. (*Pushforwards of coherent sheaves.*) Let $f : X \to Y$ be a morphism of Noetherian schemes and \mathcal{F} a coherent sheaf on X.

(i) Show that the pushforward $f_{\star}\mathcal{F}$ may not be coherent.

Hint: You can take $X = \mathbb{A}^2$, $Y = \mathbb{A}^1$, for suitable f, \mathcal{F} .

(ii) Show that if f is a finite morphism, then $f_{\star}\mathcal{F}$ is coherent. In particular, this applies to closed immersions $\iota: X \to Y$, so that if \mathcal{F} is coherent on X, then $\iota_{\star}\mathcal{F}$ is coherent on Y.

6. (*Criterion for local freeness.*) Let \mathcal{F} be a coherent sheaf over a Noetherian scheme X. Define

$$\phi(x) = \dim_{\kappa(x)} \mathcal{F}_x / \mathfrak{m}_x \mathcal{F}_x$$

where \mathfrak{m}_x is the maximal ideal in $\mathcal{O}_{X,x}$. Show that ϕ is upper-semicontinuous, that is the set $\{x \in X : \phi(x) \ge n\}$ is closed.

Optional: If X is reduced, then \mathcal{F} is locally free of rank r over X if and only if ϕ is constant equal to r.