
1. (Affine morphisms.) Let \(f : X \to Y \) be an affine morphism between two Noetherian separated schemes, and let \(F \to X \) be a quasicoherent sheaf. Show that
\[
H^i(X, F) = H^i(Y, f_*F).
\]
Hint: Consider the affine open cover \(\mathcal{U} \) of \(Y \), and the associated cover \(f^{-1}(\mathcal{U}) \) for \(X \).

2. (Hilbert polynomials and arithmetic genus.) Let \(F \to X \) be a coherent sheaf over a projective variety \(X \subset \mathbb{P}^r \).
 (i) Show that there exists a polynomial \(\chi_F \) such that
 \[
 \chi(F(n)) = \chi_F(n).
 \]
 Hint: First reduce to the case \(X = \mathbb{P}^r \) by considering \(\iota_* F \). Over \(\mathbb{P}^r \), you may wish to argue by induction on \(r \), using the exact sequence
 \[
 0 \to F(-H) \to F \to F|_H \to 0
 \]
 for a suitable hyperplane \(H \subset \mathbb{P}^r \). The only issue is exactness on the left. You can construct a suitable hyperplane working over affine patches and using a bit of commutative algebra (associated points).
 (ii) In particular, if \(F = \mathcal{O}_X \) this recovers the Hilbert polynomial we introduced in Math 203a.
 (iii) Calculate the Hilbert polynomial of \(\mathcal{O}_{\mathbb{P}^r}(m) \).
 (iv) Using (ii), show that the arithmetic genus of \(X \) is defined as
 \[
 p_a(X) = (-1)^{\dim X - 1}(\chi(\mathcal{O}_X) - 1).
 \]
 In particular, if \(X \) is an irreducible projective curve then
 \[
 p_a(X) = \dim H^1(X, \mathcal{O}_X).
 \]
 This definition is independent of the projective embedding.

3. (Complete intersections.) Let \(X \subset \mathbb{P}^r \) be a smooth complete intersection in projective space with \(\dim X = d \). Show that
 (i) for all \(\ell \), the map
 \[
 H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(\ell)) \to H^0(X, \mathcal{O}_X(\ell))
 \]
 is surjective. This was stated as a fact in a previous problem set, but now you have the tools to construct a proof.
 (ii) In particular, setting \(\ell = 0 \), \(X \) is connected.
 (iii) Show that the intermediate cohomology of the twisting line bundles vanishes
 \[
 H^i(X, \mathcal{O}_X(\ell)) = 0, \ 0 < i < d, \text{ for all } \ell.
 \]
Remark: A sheaf \(\mathcal{F} \) is said to be ACM (arithmetically Cohen-Macaulay) if \(\mathcal{F}(\ell) \) has no intermediate cohomology for all \(\ell \). Over complete intersections, \(\mathcal{O}_X \) is ACM.

(iv) Using problem 2, show that the arithmetic genus \(p_a(X) = \dim H^d(X, \mathcal{O}_X) \).

4. (Hodge numbers.) For a smooth projective variety over \(k \), set \(H^{p,q}(X) = H^q(X, \Omega^p_X) \) and define the Hodge numbers

\[
h^{p,q}(X) = \dim_k H^{p,q}(X).
\]

Show that for projective space \(h^{p,q}(\mathbb{P}^n) = 0 \) if \(p \neq q \) and \(h^{p,q}(\mathbb{P}^n) = 1 \) if \(p = q \).

Remark: If \(X \) is a smooth complex projective variety, then the cohomology of \(X \) splits as

\[
H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X).
\]

This is called the Hodge decomposition. The Hodge numbers \(h^{p,q} \) satisfy the symmetries

\[
h^{p,q} = h^{q,p} \quad \text{and} \quad h^{p,q} = h^{d-p,d-q}.
\]

The latter symmetry follows from Serre duality. The Betti numbers of \(X \) can be calculated from the Hodge numbers

\[
b_k(X) = \sum_{p+q=k} h^{p,q}.
\]

The Hodge numbers (arranged in a rotated square) form the Hodge diamond of \(X \).

Hint: You may wish to start with the Euler sequence

\[
0 \to \Omega_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n} (-1) \otimes \mathbb{C}^{n+1} \to \mathcal{O}.
\]

It is important to show that if

\[
0 \to E \to F \to \mathcal{O} \to 0
\]

is an exact sequence of vector bundles then you also have exactness of

\[
0 \to \Lambda^p E \to \Lambda^p F \to \Lambda^{p-1} E \to 0.
\]

5. (The Picard group.) Let \(X \) be a variety. Show that the Pic(\(X \)) can be identified with \(H^1(X, \mathcal{O}_X^*) \) where \(\mathcal{O}_X^* \) is the sheaf of nowhere-zero regular functions.

Hint: Start with trivializations \(\psi_i \) of a line bundle \(L|_{U_i} \to \mathcal{O}_{U_i} \) over open sets \(U_i \), and consider \(\psi_{ij} = \psi_i \circ \psi_j^{-1} \) over \(U_{ij} \). Show that \(\psi_{ij} \) satisfy the cocycle condition and thus define an element in \(H^1(X, \mathcal{O}_X^*) \).

6. (On finiteness of cohomology.) Let \(X = \mathbb{A}_k^2 \setminus \{(0,0)\} \). Show that \(\dim_k H^1(X, \mathcal{O}_X) \) is infinite.

Hint: Use the Cech cover with two open sets \(U = \{x \neq 0\} \) and \(V = \{y \neq 0\} \).