Math 203, Problem Set 6. Due Friday, March 9.

1. (Affine morphisms.) Let $f: X \rightarrow Y$ be an affine morphism between two Noetherian separated schemes, and let $\mathcal{F} \rightarrow X$ be a quasicoherent sheaf. Show that

$$
H^{i}(X, \mathcal{F})=H^{i}\left(Y, f_{\star} \mathcal{F}\right) .
$$

Hint: Consider the affine open cover \mathfrak{U} of Y, and the associated cover $f^{-1}(\mathfrak{U})$ for X.
2. (Hilbert polynomials and arithmetic genus.) Let $\mathcal{F} \rightarrow X$ be a coherent sheaf over a projective variety $X \subset \mathbb{P}_{k}^{r}$.
(i) Show that there exists a polynomial $\chi_{\mathcal{F}}$ such that

$$
\chi(\mathcal{F}(n))=\chi_{\mathcal{F}}(n) .
$$

Hint: First reduce to the case $X=\mathbb{P}^{r}$ by considering $\iota_{\star} \mathcal{F}$. Over \mathbb{P}^{r}, you may wish to argue by induction on r, using the exact sequence

$$
\left.0 \rightarrow \mathcal{F}(-H) \rightarrow \mathcal{F} \rightarrow \mathcal{F}\right|_{H} \rightarrow 0
$$

for a suitable hyperplane $H \subset \mathbb{P}^{r}$. The only issue is exactness on the left. You can construct a suitable hyperplane working over affine patches and using a bit of commutative algebra (associated points).
(ii) In particular, if $\mathcal{F}=\mathcal{O}_{X}$ this recovers the Hilbert polynomial we introduced in Math 203a.
(iii) Calculate the Hilbert polynomial of $\mathcal{O}_{\mathbb{P}^{r}}(m)$.
(iv) Using (ii), show that the arithmetic genus of X is defined as

$$
p_{a}(X)=(-1)^{\operatorname{dim} X-1}\left(\chi\left(\mathcal{O}_{X}\right)-1\right) .
$$

In particular, if X is an irreducible projective curve then

$$
p_{a}(X)=\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)
$$

This definition is independent of the projective embedding.
3. (Complete intersections.) Let $X \subset \mathbb{P}^{r}$ be a smooth complete intersection in projective space with $\operatorname{dim} X=d$. Show that
(i) for all ℓ, the map

$$
H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(\ell)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(\ell)\right)
$$

is surjective. This was stated as a fact in a previous problem set, but now you have the tools to construct a proof.
(ii) In particular, setting $\ell=0, X$ is connected.
(iii) Show that the intermediate cohomology of the twisting line bundles vanishes

$$
H^{i}\left(X, \mathcal{O}_{X}(\ell)\right)=0, \quad 0<i<d, \text { for all } \ell \text {. }
$$

Remark: A sheaf \mathcal{F} is said to be ACM (arithmetically Cohen-Macaulay) if $\mathcal{F}(\ell)$ has no intermediate cohomology for all ℓ. Over complete intersections, \mathcal{O}_{X} is ACM.
(iv) Using problem 2, show that the arithmetic genus $p_{a}(X)=\operatorname{dim} H^{d}\left(X, \mathcal{O}_{X}\right)$.
4. (Hodge numbers.) For a smooth projective variety over k, set $H^{p, q}(X)=H^{q}\left(X, \Omega_{X}^{p}\right)$ and define the Hodge numbers

$$
h^{p, q}(X)=\operatorname{dim}_{k} H^{p, q}(X) .
$$

Show that for projective space $h^{p, q}\left(\mathbb{P}^{n}\right)=0$ if $p \neq q$ and $h^{p, q}\left(\mathbb{P}^{n}\right)=1$ if $p=q$.
Remark: If X is a smooth complex projective variety, then the cohomology of X splits as

$$
H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q}(X)
$$

This is called the Hodge decomposition. The Hodge numbers $h^{p, q}$ satisfy the symmetries

$$
h^{p, q}=h^{q, p} \text { and } h^{p, q}=h^{d-p, d-q} .
$$

The latter symmetry follows from Serre duality. The Betti numbers of X can be calculated from the Hodge numbers

$$
b_{k}(X)=\sum_{p+q=k} h^{p, q} .
$$

The Hodge numbers (arranged in a rotated square) form the Hodge diamond of X.
Hint: You may wish to start with the Euler sequence

$$
0 \rightarrow \Omega_{\mathbb{P}^{n}} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \otimes \mathbb{C}^{n+1} \rightarrow \mathcal{O} \rightarrow 0
$$

It is important to show that if

$$
0 \rightarrow E \rightarrow F \rightarrow \mathcal{O} \rightarrow 0
$$

is an exact sequence of vector bundles then you also have exactness of

$$
0 \rightarrow \Lambda^{p} E \rightarrow \Lambda^{p} F \rightarrow \Lambda^{p-1} E \rightarrow 0 .
$$

5. (The Picard group.) Let X be a variety. Show that the $\operatorname{Pic}(X)$ can be identified with $H^{1}\left(X, \mathcal{O}_{X}^{\star}\right)$ where \mathcal{O}_{X}^{\star} is the sheaf of nowhere-zero regular functions.

Hint: Start with trivializations ψ_{i} of a line bundle $\left.L\right|_{U_{i}} \rightarrow \mathcal{O}_{U_{i}}$ over open sets U_{i}, and consider $\psi_{i j}=\psi_{i} \circ \psi_{j}^{-1}$ over $U_{i j}$. Show that $\psi_{i j}$ satisfy the cocycle condition and thus define an element in $H^{1}\left(X, \mathcal{O}_{X}^{\star}\right)$.
6. (On finiteness of cohomology.) Let $X=\mathbb{A}_{k}^{2} \backslash\{(0,0)\}$. Show that $\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)$ is infinite.

Hint: Use the Cech cover with two open sets $U=\{x \neq 0\}$ and $V=\{y \neq 0\}$.

