Math 203, Problem Set 7. Due Friday, March 16.

You should be able to solve Problems 1-3 on Friday, March 9. Problem 4 requires the material from Wednesday's lecture.

1. (Riemann-Roch in higher rank.) Show that if X is a smooth projective curve and $E \to X$ is a rank r vector bundle, then

$$\chi(X, E) = r\chi(X, \mathcal{O}_X) + \deg(\Lambda^r E).$$

(i) Show first that it suffices to assume E admits a section.

Hint: Specifically, show that the above Riemann-Roch formula holds for E if and only if it also holds for $E \otimes \mathcal{O}(p)$. The same is true for $E \otimes L$ where L is any line bundle. Show that if L is suitably chosen, then $E \otimes L$ has a section.

(ii) If E has a section, let F be the sheaf given by

$$0 \to \mathcal{O} \to E \to F \to 0.$$

Assume first that F is locally free. Obtain the Riemann Roch formula by induction on the rank.

(iii) If F is not locally free, let T denote the torsion part of F, and let $\tilde{F} = F/T$. Consider the natural map

$$E \to F \to \tilde{F} \to 0$$

and let K denote its kernel. Show that M and \tilde{F} are both locally free. Conclude the Riemann-Roch formula for E by induction on the rank.

2. (Gonality.) Let X be a smooth projective curve, and let $p \in X$. Show that there exists a surjective morphism $f: X \to \mathbb{P}^1$ of degree at most g+1.

Hint: Construct f as a section of $\mathcal{O}_X((g+1)p)$. To show that such an f exists, use Riemann-Roch.

Remark: The smallest degree of a morphism $f:X\to\mathbb{P}^1$ is called the gonality of the curve. Thus

gon
$$(X) < q + 1$$
.

Most curves of genus g have gonality roughly $\frac{g+3}{2}$, but other values are also possible:

- Gonality 1 means $X = \mathbb{P}^1$.
- Curves of gonality 2 admit a degree 2 morphism

$$f:X\to\mathbb{P}^1.$$

These are termed hyperelliptic curves (if $g \geq 2$).

- Trigonal curves admit a degree 3 morphism $f: X \to \mathbb{P}^1$.

- **3.** (Hyperelliptic curves.)
 - (i) Let Z be a smooth projective hyperelliptic curve of genus $g \geq 2$ (i.e. a curve of gonality 2). Show that any morphism

$$f: Z \to \mathbb{P}^1$$

of degree 2 has 2g + 2 ramification points a_1, \ldots, a_{2g+2} .

(ii) Let $X \subset \mathbb{A}^2$ be the hyperelliptic curve

$$y^2 = (x - a_1) \cdot \ldots \cdot (x - a_{2g+2}).$$

Let Y be the curve

$$w^2 = (1 - za_1) \cdots (1 - za_{2q+2}).$$

Clearly

$$(x,y) \mapsto \left(\frac{1}{x}, \frac{y}{x^{g+1}}\right)$$

is an isomorphism between X and Y away from $x \neq 0$. Let Z denote the variety obtained by gluing X and Y along this isomorphism. Now, Z turns out to be a smooth projective curve. (Smoothness was checked in Math 203a, PSet 7; projectivity requires an argument, but this is not asked for here.)

Prove that there exists a degree 2 morphism $f: Z \to \mathbb{P}^1$ which is ramified at 2g+2 points. Conclude that the hyperelliptic curve Z has genus g.

(iii) Show that $x^i \frac{dx}{y}$, $0 \le i \le g-1$ is a basis for $H^0(Z, K_Z)$.

Hint: You will have to show that $\omega_i = x^i \frac{dx}{y}$ is regular on X. The only issues are extending ω_i across the points a_j . To do so, you may wish to rewrite this form using the identity

$$y^2 = (x - a_1) \cdot \ldots \cdot (x - a_{2g+2}).$$

You will also need to check that ω_i is regular on Y.

- **4.** (Genus 2 curves.) Let X be a smooth projective genus 2 curve.
 - (i) Show that X is hyperelliptic.

Hint: Using Riemann-Roch and Serre duality, show that K_X is globally generated. Show that $|K_X|$ induces a morphism $f: X \to \mathbb{P}^1$ of degree 2.

- (ii) Show that X can be exhibited as a degree 5 curve in \mathbb{P}^3 .
- (iii) We have seen that genus 1 curves are cubics in \mathbb{P}^2 . By contrast, show that a genus 2 curve can never be a complete intersection in any projective space.

Hint: Compute the canonical bundle of X, and show K_X is not very ample using (i).