Math 203, Problem Set 1. Due Friday, January 18.

1. (*Distinguished open sets.*) Let X = Spec(A) be an affine scheme. For each $f \in A$, recall the basic open sets

$$X_f = \{ \mathfrak{p} \in X : f \notin \mathfrak{p} \}.$$

Show that

(i) $X_f \subset X_g$ iff $\sqrt{(f)} \subset \sqrt{(g)}$. In particular,

 $X_f = \emptyset \iff f \text{ is nilpotent},$

and

$$X_f = X \iff f$$
 is a unit.

(ii) Show that X is quasi-compact i.e. any cover by open subsets admits a finite subcover. More generally, each X_f is quasi-compact.

Hint: You may want to recall that the radical of an ideal $\mathfrak{a} \subset A$ is the intersection of prime ideals containing \mathfrak{a} .

2. (Specialization and generization. Generic points.) Given two points x, y of a topological space X, we say that x is a specialization of y, and y is a generization of x, if $x \in \overline{\{y\}}$.

A related notion is that of generic points: if Y is a closed subset of X, we say η_Y is a generic point of Y if $\overline{\{\eta_Y\}} = Y$.

(i) If X = Spec(A), show that \mathfrak{q} is a specialization of \mathfrak{p} if and only if $\mathfrak{p} \subset \mathfrak{q}$. Hence show that

$$\overline{\{\mathfrak{p}\}} = Z(\mathfrak{p}) = \{\mathfrak{q} : \mathfrak{p} \subset \mathfrak{q}\}.$$

Show that the closed points \mathfrak{p} of X correspond to the maximal ideals of A.

(ii) Assume that X = Spec(A) is an affine scheme. Show that any nonempty irreducible closed subset $Y \subset X$ admits a unique generic point η_Y .

3. (Stalks over generic points.) Let X be an affine scheme, and let Y be an irreducible closed subset of X. If η_Y is the generic point of Y, we write $\mathcal{O}_{X,Y}$ for the stalk \mathcal{O}_{X,η_Y} .

Show that $\mathcal{O}_{X,Y}$ is "the ring of rational functions on X that are regular at a general point of Y", i.e. it is isomorphic to the ring of equivalence classes of pairs (U, ϕ) , where $U \subset X$ is open with $U \cap Y \neq \emptyset$ and $\phi \in \mathcal{O}_X(U)$. Two such pairs (U, ϕ) and (U', ϕ') are called equivalent if there is an open subset $V \subset U \cap U'$ with $V \cap Y \neq \emptyset$ such that $\phi|_V = \phi'_V$.

In particular, if X is a scheme that is a variety, then \mathcal{O}_{X,η_X} is the function field of X.

 $\mathbf{2}$

4. (Morphisms of affine schemes.) Let $f : A \to B$ be a morphism of rings, and let $X = \operatorname{Spec}(A), Y = \operatorname{Spec}(B)$. If \mathfrak{q} is a point of Y, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A hence a point of X. Therefore, we have a well-defined morphism

$$f^\star: Y \to X.$$

- (i) Show that f^* is continuous.
- (ii) If f is surjective with kernel $\operatorname{Ker}(f) \subset A$, show that f^* is homeomorphism of Y onto the closed subset $Z(\operatorname{Ker}(f))$ of X. In particular, show that $\operatorname{Spec}(A)$ and $\operatorname{Spec}(A/\mathfrak{n})$ are homeomorphic, where \mathfrak{n} is the nilradical of A.
- (iii) If f is injective, show that f^* is dominant. More precisely, the image $f^*(Y)$ is dense in X iff $\text{Ker}(f) \subset \mathfrak{n}$.
- **5.** A field extension $K \subset L$ induces a morphism

$$\mathbb{A}^n_L \to \mathbb{A}^n_K$$

We consider the case $K = \mathbb{Q}$ and $L = \overline{\mathbb{Q}}$. Consider the following points in $\mathbb{A}^2_{\overline{\mathbb{Q}}}$:

- (i) $(\sqrt{2}, \sqrt{2});$
- (ii) $(\sqrt{2}, \sqrt{3});$
- (iii) $(x\sqrt{2} y\sqrt{3}).$

What are the images of these points in $\mathbb{A}^2_{\mathbb{Q}}$ under the map $\mathbb{A}^2_{\overline{\mathbb{Q}}} \to \mathbb{A}^2_{\mathbb{Q}}$?

6. This requires a bit of number theory, in particular you may wish to recall Kummer factorization theorem. Consider the natural morphism

$$\operatorname{Spec}(\mathbb{Z}[\sqrt{3}]) \to \operatorname{Spec}(\mathbb{Z}).$$

What are the fibers over a prime (p) in Spec (\mathbb{Z}) ? You may wish to discuss the following cases:

- (i) p = 2 or p = 3;
- (ii) the case when 3 is a quadratic residue mod p;
- (iii) the case when 3 is not a quadratic residue mod p.

Use this to "draw" a picture of $\operatorname{Spec}(\mathbb{Z}[\sqrt{3}])$.

7. Let $f(x,y) = y^2 - x^2 - x^3$. Describe the affine scheme X = Spec A/(f) settheoretically for the following rings A:

- (i) $A = \mathbb{C}[x, y]$ (the standard polynomial ring),
- (ii) $A = \mathbb{C}[x, y]_{(x,y)}$ (the localization of the polynomial ring at the origin),
- (iii) $A = \mathbb{C}[[x, y]]$ (the ring of formal power series).

Interpret the results geometrically. In which of the three cases is X irreducible?

8. For each of these cases below give an example of an affine scheme X with that property, or prove that such an X does not exist:

- (i) X has infinitely many points, and dim X = 0;
- (ii) X has exactly one point, and dim X = 1;
- (iii) X has exactly two points, and dim X = 1;
- (iv) X = Spec A with $A \subset \mathbb{C}[x]$, and dim X = 2.