Math 203, Problem Set 5. Due Wednesday, March 6.

1. (Projective bundles.) Let $E \rightarrow X$ be a vector bundle over a variety X. Consider the projectivization

$$
\pi: \mathbb{P}(E) \rightarrow X
$$

and recall the line bundle $\mathcal{O}_{\mathbb{P}(E)}(-1) \rightarrow \mathbb{P}(E)$ with the natural morphism

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}(E)}(-1) \rightarrow \pi^{\star} E
$$

(i) Show that a morphism $f: S \rightarrow \mathbb{P}(E)$ yields a morphism $\eta=\pi \circ f: S \rightarrow X$ together with a line bundle $\mathcal{L} \rightarrow S$ and a morphism of vector bundles

$$
0 \rightarrow \mathcal{L} \rightarrow \eta^{\star} E
$$

The converse is also true, and you should convince yourself this is the case by working locally (or read Hartshorne II.7.12).
(ii) Calculate the canonical line bundle $K_{\mathbb{P}(E)}$ in terms of the canonical bundle of X, the determinant of E and twisting line bundles.

Hint: You should convince yourself that the generalized Euler sequence is exact by working locally:

$$
0 \rightarrow \Omega_{\mathbb{P}(E) / X} \rightarrow \mathcal{O}_{\mathbb{P} E}(-1) \otimes \pi^{\star} E^{\vee} \rightarrow \mathcal{O} \rightarrow 0
$$

(iii) Consider the Hirzebruch surface

$$
\mathbb{F}_{a}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}+\mathcal{O}_{\mathbb{P}^{1}}(a)\right)
$$

What is the canonical bundle of \mathbb{F}_{a} ?
2. (Adjunction formula.) Let X be a smooth variety, and let $Y \subset X$ be a smooth hypersurface. Show that $\left.N_{Y / X} \simeq \mathcal{O}_{X}(Y)\right|_{Y}$. Conclude from the normal sequence that

$$
K_{Y}=\left.K_{X} \otimes \mathcal{O}_{X}(Y)\right|_{Y}
$$

3. (Complete intersections.) Let X be a complete intersection of hypersurfaces of degrees $\left(d_{1}, \ldots, d_{r}\right)$ in \mathbb{P}^{n}.
(i) Show that $K_{X}=\mathcal{O}_{X}\left(\sum d_{i}-n-1\right)$.

Fact: We will see later that if X is a complete intersection then the restriction

$$
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(\ell)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(\ell)\right)
$$

is surjective for ℓ. A direct argument is possible, but the shortest proofs use cohomology. In any case, we will assume this here. A normal variety X with this property is said to be projectively normal.
(ii) The geometric genus p_{g} of X is defined as the number of sections of K_{X}. Show that if X is a degree d hypersurface in \mathbb{P}^{n} then $p_{g}(X)=\binom{d-1}{n}$.

In particular if X is a smooth degree d curve in \mathbb{P}^{2}, then the geometric and arithmetic genus agree

$$
p_{g}(X)=p_{a}(X)=\frac{(d-1)(d-2)}{2} .
$$

Recall that the arithmetic genus was defined in the last homework of Math 203a.
(iii) A $K 3$ surface is a smooth surface with trivial canonical bundle. (In addition, one requires that the irregularity be zero, see below, but we ignore this here.) K3s are examples of Calabi-Yau manifolds in dimension 2 and play a special role in the classification of surfaces. They are named after Kähler, Kummer and Kodaira and the mountain $K 2$, the second highest mountain in the world. (There is also a $K 3$ mountain which is the 12th highest.)

Classify all $K 3$ surfaces which are complete intersections. What are their degrees in projective space?

Furthermore, if $X \subset \mathbb{P}^{n}$ is such a $K 3$ surface on your list, and C is a smooth hyperplane section of X :

$$
C=X \cap H
$$

where H is a hyperplane in \mathbb{P}^{n}, compute the arithmetic genus of C.
4. (Plurigenera, Hodge numbers, irregularity.) Define the plurigenera of a smooth projective variety X to be

$$
p_{n}(X)=\operatorname{dim}_{k} H^{0}\left(X, K_{X}^{\otimes n}\right) .
$$

This recovers the geometric genus when $n=1$.
Define the Hodge numbers

$$
h^{q, 0}(X)=\operatorname{dim} H^{0}\left(X, \Omega^{q}\right) .
$$

The first Hodge number $q(X)=h^{1,0}(X)$ is called the irregularity of X.
Show that birational smooth varieties X and X^{\prime} have the same pluri-genera and the same Hodge numbers $h^{q, 0}$.

Hint: This follows by the methods of Hartshorne, Chapter II.8.19.
5. (Product schemes, Kodaira dimension, geometric and arithmetic genera.)
(i) Let X, Y be smooth varieties. Show that

$$
\Omega_{X \times Y}=\operatorname{pr}_{X}^{\star} \Omega_{X} \oplus \operatorname{pr}_{Y}^{\star} \Omega_{Y} .
$$

What is the corresponding statement for the canonical bundles?
(ii) Consider E a smooth cubic in \mathbb{P}^{2}. Show that for the abelian surface $A=E \times E$, the arithmetic and geometric genus are -1 and 1 , hence not equal.

Fact: It can be shown that the plurigenera (of smooth varieties) grow in such a fashion that

$$
p_{n}(X) / n^{k} \text { is bounded, }
$$

for some constant

$$
\operatorname{kod}(X)=k \in\{-\infty, 0,1, \ldots, \operatorname{dim} X\} .
$$

The constant k is called the Kodaira dimension of X. If $\operatorname{kod}(X)=\operatorname{dim} X$ then X is said to be of general type.
(iii) Show that

$$
\operatorname{kod}(X \times Y)=\operatorname{kod}(X)+\operatorname{kod}(Y) .
$$

(iv) If X is a smooth projective variety which is rational, show that $\operatorname{kod}(X)=-\infty$ and the Hodge numbers $h^{q, 0}=0$.
(v) For arbitrary dimensions d, construct smooth projective varieties with Kodaira dimensions $-\infty, 0,1, \ldots, d$.

Hint: In dimension $d=1$, calculate the plurigenera of cubics and quartics in \mathbb{P}^{2} using the methods of Problem 3. Then take products.
6. (Blowups.) Let $\pi: \tilde{X} \rightarrow X$ be the blowup of a smooth variety X of dimension d at a point p. Recall the exceptional divisor

$$
E \simeq \mathbb{P}^{d-1}
$$

It is proven in Hartshorne, Theorem 8.24, that the normal bundle of E in \tilde{X} equals $\mathcal{O}_{E}(-1)$. Use this fact to show that

$$
K_{\tilde{X}}=\pi^{\star} K_{X} \otimes \mathcal{O}((d-1) E) .
$$

Hint: Consider $M=K_{\tilde{X}} \otimes \pi^{\star} K_{X}^{\vee}$. Show that M restricts trivially to $\tilde{X} \backslash E$. Show that this implies M is of the form $\mathcal{O}_{\tilde{X}}(q E)$. To confirm that $q=d-1$, use adjunction formula for (E, \tilde{X}).

