Logistics

- Math 203a covered affine and projective varieties.
Logistics

- Math 203a covered **affine** and **projective varieties**.

- Math 203b will cover **schemes** and **cohomology** – Chapters II and III of Hartshorne.
Logistics

- Math 203a covered **affine** and **projective varieties**.

- Math 203b will cover **schemes** and **cohomology** – Chapters II and III of Hartshorne.

- **Instructor**: Dragos Oprea, doprea@math.ucsd.edu, APM 6-101

- Lectures: WF, 12:30-1:50, APM B-412

- Office hours: Wednesday 2-3pm in APM 6-101. I am available for questions after lecture or by appointment.

- No lectures on Feb 7, 9. Make-up Jan 28, Feb 25.
Logistics

- Math 203a covered **affine** and **projective varieties**.

- Math 203b will cover **schemes** and **cohomology** – Chapters II and III of Hartshorne.

- **Instructor:** Dragos Oprea, doprea@math.ucsd.edu, APM 6-101

- **Lectures:** WF, 12:30-1:50, APM B-412

- Office hours: Wednesday 2-3pm in APM 6-101. I am available for questions after lecture or by appointment.

- No lectures on Feb 7, 9. Make-up Jan 28, Feb 25.
Logistics

- Math 203a covered **affine** and **projective varieties**.

- Math 203b will cover **schemes** and **cohomology** – Chapters II and III of Hartshorne.

- **Instructor**: Dragos Oprea, doprea@math.ucsd.edu, APM 6-101

- **Lectures**: WF, 12:30-1:50, APM B-412

- **Office hours**: Wednesday 2-3pm in APM 6-101.

 I am available for questions after lecture or by appointment.
Logistics

▶ Math 203a covered **affine** and **projective varieties**.

▶ Math 203b will cover **schemes** and **cohomology** – Chapters II and III of Hartshorne.

▶ **Instructor**: Dragos Oprea, doprea@math.ucsd.edu, APM 6-101

▶ **Lectures**: WF, 12:30-1:50, APM B-412

▶ **Office hours**: Wednesday 2-3pm in APM 6-101.

 I am available for questions after lecture or by appointment.

▶ **No lectures on Feb 7, 9. Make-up Jan 28, Feb 25.**
Resources

- **Website:** http://math.ucsd.edu/~doprea/203w19.html

- Textbook: I will roughly follow Andreas Gathamnn’s notes available online. I recommend that you also consult Shafarevich’s *Basic Algebraic Geometry* and Hartshorne’s *Algebraic Geometry*.

- Other useful texts are:
 - David Eisenbud, Joe Harris - *The geometry of schemes*
 - David Mumford, *The red book of varieties and schemes*
 - Ravi Vakil, *Foundations of algebraic geometry*
 - David Eisenbud, *Commutative algebra with a view towards algebraic geometry*
 - M. Atiyah, I. Macdonald, *Commutative algebra*
Resources

- **Website:** http://math.ucsd.edu/~doprea/203w19.html

- **Textbook:** I will roughly follow Andreas Gathmann’s notes available online.
Resources

- **Website:** http://math.ucsd.edu/~doprea/203w19.html

- **Textbook:** I will roughly follow Andreas Gathamnn’s notes available online.

 I recommend that you also consult Shafarevich’s Basic Algebraic Geometry and Hartshorne’s Algebraic Geometry.
Resources

- **Website:** http://math.ucsd.edu/~doprea/203w19.html

- **Textbook:** I will roughly follow Andreas Gathamnn’s notes available online.

 I recommend that you also consult Shafarevich's Basic Algebraic Geometry and Hartshorne's Algebraic Geometry.

- **Other useful texts are**
 - David Eisenbud, Joe Harris - The geometry of schemes
 - David Mumford, The red book of varieties and schemes
 - Ravi Vakil, Foundations of algebraic geometry
 - David Eisenbud, Commutative algebra with a view towards algebraic geometry
 - M. Atiyah, I. Macdonald, Commutative algebra
Resources

- **Website:** http://math.ucsd.edu/~doprea/203w19.html
- **Textbook:** I will roughly follow Andreas Gathammnn’s notes available online.

I recommend that you also consult Shafarevich's Basic Algebraic Geometry and Hartshorne’s Algebraic Geometry.

- **Other useful texts are**
 - David Eisenbud, Joe Harris - The geometry of schemes
 - David Mumford, The red book of varieties and schemes
 - Ravi Vakil, Foundations of algebraic geometry
 - David Eisenbud, Commutative algebra with a view towards algebraic geometry
 - M. Atiyah, I. Macdonald, Commutative algebra
Misc

- Prerequisites:
 - Math 203 A
Misc

- Prerequisites:
 - Math 203 A
Prerequisites:

- Math 203 A
- Familiarity with basic point set and algebraic topology, complex analysis and/or differentiable manifolds is helpful to get some intuition for the concepts.
Prerequisites:

- Math 203 A
- Familiarity with basic point set and algebraic topology, complex analysis and/or differentiable manifolds is helpful to get some intuition for the concepts.
- Cohomology?
Prerequisites:

Math 203 A

Familiarity with basic point set and algebraic topology, complex analysis and/or differentiable manifolds is helpful to get some intuition for the concepts.

Cohomology?
Prerequisites:

- Math 203 A
- Familiarity with basic point set and algebraic topology, complex analysis and/or differentiable manifolds is helpful to get some intuition for the concepts.
- Cohomology?

Grading: The grade will be based entirely on 6 - 7 homeworks and regular attendance. The problem sets are due on Friday.
Misc

- Prerequisites:
 - Math 203 A
 - Familiarity with basic point set and algebraic topology, complex analysis and/or differentiable manifolds is helpful to get some intuition for the concepts.
 - Cohomology?

- Grading: The grade will be based entirely on 6 - 7 homeworks and regular attendance. The problem sets are due on Friday.
Figure: Grothendieck
Course outline

- Prime spectra of rings
Course outline

▶ Prime spectra of rings

▶ Schemes and their properties
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
- Line bundles and divisors
Course outline

▶ Prime spectra of rings
▶ Schemes and their properties
▶ Morphisms and their properties
▶ Line bundles and divisors
▶ Coherent sheaves
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
- Line bundles and divisors
- Coherent sheaves
- Cohomology of sheaves
Course outline

▶ Prime spectra of rings
▶ Schemes and their properties
▶ Morphisms and their properties
▶ Line bundles and divisors
▶ Coherent sheaves
▶ Cohomology of sheaves
▶ Examples and computations
Course outline

- **Prime spectra** of rings
- **Schemes** and their properties
- **Morphisms** and their properties
- Line bundles and **divisors**
- Coherent sheaves
- **Cohomology** of sheaves
- Examples and computations
 - projective space
- complete intersections
- smooth projective curves
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
- Line bundles and divisors
- Coherent sheaves
- Cohomology of sheaves
- Examples and computations
 - projective space
 - complete intersections
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
- Line bundles and divisors
- Coherent sheaves
- Cohomology of sheaves
- Examples and computations
 - projective space
 - complete intersections
 - smooth projective curves
Course outline

- Prime spectra of rings
- Schemes and their properties
- Morphisms and their properties
- Line bundles and divisors
- Coherent sheaves
- Cohomology of sheaves
- Examples and computations
 - projective space
 - complete intersections
 - smooth projective curves
Before the break....

- Affine varieties
Before the break....

- Affine varieties \iff finitely generated k-algebras
Before the break....

- **Affine varieties** \iff finitely generated k-algebras

- **Gluing** \implies prevarieties and varieties
Before the break....

- **Affine varieties** ⇐⇒ finitely generated k-algebras

- **Gluing** ⇒ prevarieties and varieties

- **Sheaf theory** ⇒ regular functions, morphisms, gluing etc
Before the break....

- **Affine varieties** \iff finitely generated k-algebras

- **Gluing** \implies prevarieties and varieties

- **Sheaf theory** \implies regular functions, morphisms, gluing etc

- **Deficiencies**
Before the break....

- **Affine varieties** ⇔ finitely generated k-algebras

- **Gluing** ⇒ prevarieties and varieties

- **Sheaf theory** ⇒ regular functions, morphisms, gluing etc

- **Deficiencies** ⇒ Bezout, intersection multiplicities
Before the break....

- **Affine varieties** \iff finitely generated k-algebras

- **Gluing** \implies prevarieties and varieties

- **Sheaf theory** \implies regular functions, morphisms, gluing etc

- **Deficiencies** \implies Bezout, intersection multiplicities
Example: \(X = \{ y - x^n = 0 \}, \ Y = \{ y = 0 \} , \)

\[X \cap Y = \{ 0 \} \]
Example: $X = \{y - x^n = 0\}$, $Y = \{y = 0\}$,

$X \cap Y = \{0\}$ with multiplicity n
Example: \(X = \{ y - x^n = 0 \} \), \(Y = \{ y = 0 \} \),

\[X \cap Y = \{ 0 \} \text{ with multiplicity } n \]

Bad idea:

\[I(X \cap Y) = \sqrt{I(X) + I(Y)} = (x, y) \]
Example: \(X = \{ y - x^n = 0 \}, \ Y = \{ y = 0 \}, \)

\[X \cap Y = \{ 0 \} \text{ with multiplicity } n \]

Bad idea:

\[I(X \cap Y) = \sqrt{I(X) + I(Y)} = (x, y) \implies \text{bad} \]
Example: \(X = \{ y - x^n = 0 \}, \ Y = \{ y = 0 \}, \)

\[X \cap Y = \{ 0 \} \text{ with multiplicity } n \]

Bad idea:

\[I(X \cap Y) = \sqrt{I(X) + I(Y)} = (x, y) \implies \text{bad} \]

Better idea:

\[I(X) + I(Y) = (y - x^n) + (y) = (y, x^n) \]
Example: \(X = \{ y - x^n = 0 \} \), \(Y = \{ y = 0 \} \),

\[X \cap Y = \{ 0 \} \text{ with multiplicity } n \]

Bad idea:

\[I(X \cap Y) = \sqrt{I(X) + I(Y)} = (x, y) \implies \text{bad} \]

Better idea:

\[I(X) + I(Y) = (y - x^n) + (y) = (y, x^n) \]

\[\implies \mathbb{C}[x, y]/(y, x^n) = \mathbb{C}[x]/(x^n) = \langle 1, x, \ldots, x^{n-1} \rangle \]
Example: \(X = \{ y - x^n = 0 \}, \ Y = \{ y = 0 \}, \)

\(X \cap Y = \{ 0 \} \) with multiplicity \(n \)

Bad idea:

\[
I(X \cap Y) = \sqrt{I(X) + I(Y)} = (x, y) \quad \Rightarrow \quad \text{bad}
\]

Better idea:

\[
I(X) + I(Y) = (y - x^n) + (y) = (y, x^n)
\]

\[
\Rightarrow \quad \mathbb{C}[x, y]/(y, x^n) = \mathbb{C}[x]/(x^n) = \langle 1, x, \ldots, x^{n-1} \rangle
\]

Scheme theoretic intersection
Issues to address

- Reducible objects

Nilpotents
Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

What do non-radical ideals correspond to?

Arbitrary rings $A(X)$ is f.g. k-algebra

What do algebras which are not finitely generated give?

Over non-algebraically closed fields?

What if there's no field at all?
Issues to address

- **Reducible** objects – we dealt with them component by component.
Issues to address

- **Reducible** objects – we dealt with them component by component.

 Define \mathcal{O}_X?
Issues to address

- **Reducible** objects – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**
Issues to address

- **Reducible** objects – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$
Issues to address

- **Reducible** objects – we dealt with them *component by component*.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?
Issues to address

- **Reducible** objects – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**
Issues to address

- **Reducible objects** – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**

 $A(X)$ is f.g. k-algebra

 What do algebras which are not finitely generated give?

 Over non-algebraically closed fields?

 What if there's no field at all?
Issues to address

- **Reducible objects** – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**

 $A(X)$ is f.g. k-algebra

 What do algebras which are not finitely generated give?
Issues to address

- **Reducible** objects – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**

 $A(X)$ is f.g. k-algebra

 What do algebras which are not finitely generated give?

 Over non-algebraically closed fields?
Issues to address

- **Reducible objects** – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**

 $A(X)$ is f.g. k-algebra

 What do algebras which are not finitely generated give?

 Over non-algebraically closed fields?

 What if there’s no field at all?
Issues to address

- **Reducible objects** – we dealt with them component by component.

 Define \mathcal{O}_X?

- **Nilpotents**

 Radical ideals correspond to affine algebraic sets $X \subset \mathbb{A}^n$

 What do non-radical ideals correspond to?

- **Arbitrary rings**

 $A(X)$ is f.g. k-algebra

 What do algebras which are not finitely generated give?

 Over non-algebraically closed fields?

 What if there’s no field at all?
All issues will be solved at once:
All issues will be solved at once:

- we allow *arbitrary rings*
All issues will be solved at once:

- we allow *arbitrary rings* (not only finitely generated algebras)
All issues will be solved at once:

- we allow arbitrary rings (not only finitely generated algebras)

 Number Theory
All issues will be solved at once:

- we allow *arbitrary rings* (not only finitely generated algebras)

 Number Theory

- we allow nilpotents
All issues will be solved at once:

- we allow arbitrary rings (not only finitely generated algebras)

 Number Theory

- we allow nilpotents

 Analysis
All issues will be solved at once:

- we allow **arbitrary rings** (not only finitely generated algebras)

 Number Theory

- we allow **nilpotents**

 Analysis e.g. $A[\epsilon]/\epsilon^2 : a + b\epsilon$
All issues will be solved at once:

- we allow **arbitrary rings** (not only finitely generated algebras)

 Number Theory

- we allow **nilpotents**

 Analysis e.g. $A[\epsilon]/\epsilon^2 : a + b\epsilon$

- we **glue**
All issues will be solved at once:

- we allow **arbitrary rings** (not only finitely generated algebras)

 Number Theory

- we allow **nilpotents**

 Analysis e.g. $A[\epsilon]/\epsilon^2 : a + b\epsilon$

- we **glue**

 Geometry
All issues will be solved at once:

- we allow arbitrary rings (not only finitely generated algebras)

 Number Theory

- we allow nilpotents

 Analysis e.g. $A[\epsilon]/\epsilon^2 : a + b\epsilon$

- we glue

 Geometry

- Outcome: **Schemes**
All issues will be solved at once:

▶ we allow arbitrary rings (not only finitely generated algebras)

Number Theory

▶ we allow nilpotents

Analysis e.g. $A[\epsilon]/\epsilon^2 : a + b\epsilon$

▶ we glue

Geometry

▶ Outcome: Schemes
General principles

(A) Think relatively
General principles

(A) Think relatively

- Families of objects

\[f : X \to S. \]
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth,
General principles

(A) Think relatively

- Families of objects
 \[f : X \rightarrow S. \]

- Adjectives will apply to morphisms: smooth, separated,
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper,
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type,
General principles

(A) Think relatively

- Families of objects

\[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine,
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc

- For varieties \(X/k \) – structure morphism
 \[f : X \to \text{“}k\text{”} \]
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc

- For varieties \(X/k \) – structure morphism
 \[f : X \to \text{"}k\text{"} \]

(B) The base may change
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc

- For varieties \(X/k \) – structure morphism
 \[f : X \to "k" \]

(B) The base may change

- Basechange (draw diagram)
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc

- For varieties \(X/k \) – structure morphism
 \[f : X \to \text{“}k\text{”} \]

(B) The base may change

- Basechange (draw diagram)

- Families of objects also interact
General principles

(A) Think relatively

- Families of objects
 \[f : X \to S. \]

- Adjectives will apply to morphisms: smooth, separated, proper, finite type, affine, projective, etc

- For varieties \(X/k \) – structure morphism
 \[f : X \to "k" \]

(B) The base may change

- Basechange (draw diagram)

- Families of objects also interact
General principles

(C) Think categorically

We think of an object X in relation to all other schemes S.

Functor of points $h_X: \text{Schemes} \to \text{Sets}$, $h_X(S) = \text{Mor}(S, X)$

To know X is tantamount to knowing h_X.

We used this to define $X \times Y$.

We will generalize to fibered products.

S-points \iff morphisms $S \to X$

for varieties: "old" points \iff k-points
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

$\text{Functor of points } h_X : \text{Schemes} \to \text{Sets}, h_X(S) = \text{Mor}(S, X)$

To know X is tantamount to knowing h_X.

We used this to define $X \times Y$.

We will generalize to fibered products.

$\text{S-points } \iff \text{morphisms } S \to X$

$\text{for varieties: } \text{"old" points } \iff k\text{-points}$
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

$$h_X : Schemes \to Sets, \quad h_X(S) = \text{Mor}(S, X)$$
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

\[h_X : \text{Schemes} \to \text{Sets}, \quad h_X(S) = \text{Mor}(S, X) \]

- To know X is tantamount to knowing h_X.
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

$$h_X : Schemes \to Sets, \quad h_X(S) = \text{Mor}(S, X)$$

- To know X is tantamount to knowing h_X.
- We used this to define $X \times Y$.
General principles

(C) Think categorically

▶ We think of an object X in relation to all other schemes S.

▶ Functor of points

$$h_X : \text{Schemes} \to \text{Sets}, \quad h_X(S) = \text{Mor}(S, X)$$

▶ To know X is tantamount to knowing h_X.

▶ We used this to define $X \times Y$. We will generalize to fibered products.
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

\[h_X : Schemes \to Sets, \quad h_X(S) = \text{Mor}(S, X) \]

- To know X is tantamount to knowing h_X.
- We used this to define $X \times Y$. We will generalize to fibered products.

- S-points \iff morphisms $S \to X$
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

\[
h_X : \text{Schemes} \to \text{Sets}, \quad h_X(S) = \text{Mor}(S, X)
\]

- To know X is tantamount to knowing h_X.
- We used this to define $X \times Y$. We will generalize to fibered products.

- S-points \iff morphisms $S \to X$

- for varieties: “old” points \iff k-points
General principles

(C) Think categorically

- We think of an object X in relation to all other schemes S.
- Functor of points

$$h_X : \text{Schemes} \rightarrow \text{Sets}, \quad h_X(S) = \text{Mor}(S, X)$$

- To know X is tantamount to knowing h_X.
- We used this to define $X \times Y$. We will generalize to fibered products.

- S-points \iff morphisms $S \rightarrow X$

- for varieties: “old” points \iff k-points
The very idea of scheme is of infantile *simplicity* – so simple, so humble, that no one before me thought of stooping so low. So childish, in short, that for years, despite all the evidence, for many of my erudite colleagues, it was really “not serious”.

A. Grothendieck
The very idea of scheme is of infantile simplicity – so simple, so humble, that no one before me thought of stooping so low. So childish, in short, that for years, despite all the evidence, for many of my erudite colleagues, it was really “not serious”.

A. Grothendieck
There is no serious historical question of how Grothendieck found his definition of schemes. It was in the air. Serre has well said that no one invented schemes...
There is no serious historical question of how Grothendieck found his definition of schemes. It was in the air. Serre has well said that no one invented schemes... .

The question is, what made Grothendieck believe he should use this definition to simplify an 80 page paper by Serre into some 1000 pages of Elements de Geometrie Algebrique?

C. McLarty
There is no serious historical question of how Grothendieck found his definition of schemes. It was in the air. Serre has well said that no one invented schemes...

The question is, what made Grothendieck believe he should use this definition to simplify an 80 page paper by Serre into some 1000 pages of Elements de Geometrie Algebrique?

C. McLarty
Rough Strategy

- **Affine** schemes – commutative rings
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define *morphisms*

Roadmap for affine schemes
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**

Roadmap for affine schemes

A commutative ring with unit
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**

Roadmap for affine schemes

A commutative ring with unit

- as a set $X = \text{Spec}A$
Rough Strategy

- **Affine schemes** – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**

Roadmap for affine schemes

A commutative ring with unit

- as a **set** $X = \text{Spec}A$
- as a **topological space** - Zariski topology
Rough Strategy

- **Affine schemes** – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**

Roadmap for affine schemes

A commutative ring with unit

- as a **set** $X = \text{Spec}A$
- as a **topological space** - Zariski topology
- sheaf of regular functions - \mathcal{O}_X
Rough Strategy

- **Affine schemes** – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define **morphisms**

Roadmap for affine schemes

* A commutative ring with unit
 - as a set \(X = \text{Spec} A \)
 - as a **topological space** - Zariski topology
 - sheaf of regular functions - \(\mathcal{O}_X \)

Example: \(A = k[x_1, \ldots, x_n]/I(X) \) should “recover” varieties
Rough Strategy

- **Affine schemes** – commutative rings
- **Glue** affine schemes – arbitrary schemes
- **Define** morphisms

Roadmap for affine schemes

A commutative ring with unit

- as a **set** \(X = \text{Spec} A \)
- as a **topological space** - Zariski topology
- **sheaf** of regular functions - \(\mathcal{O}_X \)

Example: \(A = k[x_1, \ldots, x_n]/I(X) \) should “recover” varieties

Philosophy: Elements of \(A \) are regular functions on \(X \).
Rough Strategy

- **Affine** schemes – commutative rings
- **Glue** affine schemes – arbitrary schemes
- Define morphisms

Roadmap for affine schemes

A commutative ring with unit

- as a **set** $X = \text{Spec} A$
- as a **topological space** - Zariski topology
- sheaf of regular functions - \mathcal{O}_X

Example: $A = k[x_1, \ldots, x_n]/I(X)$ should “recover” varieties

Philosophy: Elements of A are regular functions on X.
Fundamental question: What are points of a scheme?
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

 $$m_x \subset A(X), \quad m_x = \{ f : f(x) = 0 \}$$

 maximal ideal in $A = A(X)$
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

$$m_x \subset A(X), \quad m_x = \{ f : f(x) = 0 \}$$

maximal ideal in $A = A(X)$

- converse is true by the Nullstellensatz
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

 $$m_x \subset A(X), \; m_x = \{ f : f(x) = 0 \}$$

 maximal ideal in $A = A(X)$

- converse is true by the **Nullstellensatz**

- **Issue:** we don’t have Nullstellensatz for an arbitrary ring A
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

 $$m_x \subset A(X), \ m_x = \{f : f(x) = 0\}$$

 maximal ideal in $A = A(X)$

- converse is true by the Nullstellensatz

- Issue: we don’t have Nullstellensatz for an arbitrary ring A

- Issue: maximal ideals are not functorial
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

 \[m_x \subset A(X), \quad m_x = \{ f : f(x) = 0 \} \]

 maximal ideal in $A = A(X)$

- converse is true by the Nullstellensatz

- **Issue:** we don’t have Nullstellensatz for an arbitrary ring A

- **Issue:** maximal ideals are not functorial

 - $f : A \rightarrow B$ then $f^{-1}(m_B)$ is not maximal
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

$$m_x \subset A(X), \quad m_x = \{ f : f(x) = 0 \}$$

maximal ideal in $A = A(X)$

- converse is true by the Nullstellensatz

- Issue: we don’t have Nullstellensatz for an arbitrary ring A

- Issue: maximal ideals are not functorial

 - $f : A \to B$ then $f^{-1}(m_B)$ is not maximal

- Solution: prime ideals are better
Fundamental question: What are points of a scheme?

- if $X \subset \mathbb{A}^n$ variety, then $x \in X$ yields

 $$m_x \subset A(X), \ m_x = \{ f : f(x) = 0 \}$$

 maximal ideal in $A = A(X)$

- converse is true by the Nullstellensatz

- Issue: we don’t have Nullstellensatz for an arbitrary ring A

- Issue: maximal ideals are not functorial

 - $f : A \to B$ then $f^{-1}(m_B)$ is not maximal

- Solution: prime ideals are better
Zariski prime spectrum

Definition
Let A be a ring. $X = \text{Spec } A$ consists in all prime ideals in A.

▶ Think X is a geometric object. Its points are prime ideals $p \subset A$ has double meaning: ideal + point $[p] \in X$. }
Zariski prime spectrum

Definition
Let A be a ring. $X = \text{Spec } A$ consists in all prime ideals in A.

- Think X is a geometric object.
Zariski prime spectrum

Definition
Let A be a ring. $X = \text{Spec } A$ consists in all prime ideals in A.

- Think X is a geometric object. Its points are prime ideals.
Zariski prime spectrum

Definition
Let A be a ring. $X = \text{Spec } A$ consists in all prime ideals in A.

- Think X is a geometric object. Its points are prime ideals.
- $p \subset A$ has double meaning:
Zariski prime spectrum

Definition
Let \(A \) be a ring. \(X = \text{Spec } A \) consists in all prime ideals in \(A \).

- Think \(X \) is a geometric object. Its points are prime ideals.
- \(p \subset A \) has double meaning: ideal + point \([p] \in X \).
Functions on Spec A

p prime \implies A/p domain \implies $k(p)$ fraction field
Functions on Spec A

- \(\mathfrak{p} \) prime \(\implies \) \(A/\mathfrak{p} \) domain \(\implies \) \(k(\mathfrak{p}) \) fraction field

- Elements of \(A \) are functions on \(X \)
Functions on Spec A

- p prime $\implies A/p$ domain $\implies k(p)$ fraction field

- Elements of A are functions on X
Functions on Spec A

p prime $\implies A/p$ domain $\implies k(p)$ fraction field

Elements of A are functions on X

$$f \in A \implies \bar{f} \in A/p \hookrightarrow k(p)$$
Functions on Spec A

- \mathfrak{p} prime $\implies A/\mathfrak{p}$ domain $\implies k(\mathfrak{p})$ fraction field

- Elements of A are functions on X

$$f \in A \implies \bar{f} \in A/\mathfrak{p} \hookrightarrow k(\mathfrak{p})$$

$$f \in A \text{ gives function } f(\mathfrak{p}) \in k(\mathfrak{p})$$

Values in different fields!!!

Example:

- $A = k[x_1, \ldots, x_n], f \in A$

- $m = (x_1 - a_1, \ldots, x_n - a_n)$ is a point of Spec A

- $f \in A \hookrightarrow A/m = k, f \mapsto f(a)$
Functions on Spec A

- \(p \) prime \(\iff \) \(A/p \) domain \(\iff \) \(k(p) \) fraction field

- Elements of \(A \) are functions on \(X \)

\[
f \in A \iff \bar{f} \in A/p \hookrightarrow k(p)
\]

\(f \in A \) gives function \(f(p) \in k(p) \)

Values in different fields!!!
Functions on Spec A

- p prime $\implies A/p$ domain $\implies k(p)$ fraction field

- Elements of A are functions on X

 $f \in A \implies \bar{f} \in A/p \hookrightarrow k(p)$

 $f \in A$ gives function $f(p) \in k(p)$

 Values in different fields!!!

Example:

- $A = k[x_1, \ldots, x_n]$,
Functions on Spec A

- p prime $\implies A/p$ domain $\implies k(p)$ fraction field

- Elements of A are functions on X

$$f \in A \implies \overline{f} \in A/p \hookrightarrow k(p)$$

- $f \in A$ gives function $f(p) \in k(p)$

Values in different fields!!!

Example:

- $A = k[x_1, \ldots, x_n], f \in A$
Functions on Spec A

p prime $\implies A/p$ domain $\implies k(p)$ fraction field

Elements of A are functions on X

$$f \in A \implies \bar{f} \in A/p \hookrightarrow k(p)$$

$f \in A$ gives function $f(p) \in k(p)$

Values in different fields!!!

Example:

- $A = k[x_1, \ldots, x_n]$, $f \in A$
- $m = (x_1 - a_1, \ldots, x_n - a_n)$ is a point of SpecA
Functions on Spec A

p prime $\implies A/p$ domain $\implies k(p)$ fraction field

Elements of A are functions on X

$$f \in A \implies \overline{f} \in A/p \hookrightarrow k(p)$$

$f \in A$ gives function $f(p) \in k(p)$

Values in different fields!!!

Example:

$A = k[x_1, \ldots, x_n], f \in A$

$m = (x_1 - a_1, \ldots, x_n - a_n)$ is a point of SpecA

$$f \in A \rightarrow A/m = k, \quad f \mapsto f(a)$$
Functions on Spec A

- p prime $\implies A/p$ domain $\implies k(p)$ fraction field

- Elements of A are functions on X

 $$f \in A \implies \bar{f} \in A/p \hookrightarrow k(p)$$

 $$f \in A \text{ gives function } f(p) \in k(p)$$

 Values in different fields!!!

Example:

- $A = k[x_1, \ldots, x_n], f \in A$
- $m = (x_1 - a_1, \ldots, x_n - a_n)$ is a point of SpecA

 $$f \in A \rightarrow A/m = k, \quad f \mapsto f(a)$$
Varieties vs. Schemes - Part I

- \(X \subset \mathbb{A}^n \) variety
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $\mathbb{A}(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety
- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring
- $X^\text{sch} = \text{Spec } A(X)$

If $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^sch

X^sch has prime ideals corresponding to subvarieties $Y \subset X$

Each $Y \subset X$ gives a prime ideal which gives a point in X^sch

η_Y is the generic point of Y

Points of X^sch correspond to subvarieties of X
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- if $x \in X$ then $m_x \subset A(X)$ maximal ideal
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- if $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- if $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- If $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety
- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring
- $X^{\text{sch}} = \text{Spec } A(X)$
- if $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}
- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$
- Each $Y \subset X$ gives a prime ideal
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- if $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$

- Each $Y \subset X$ gives a prime ideal which gives a point in X^{sch}
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{sch} = \text{Spec } A(X)$

- if $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$

- Each $Y \subset X$ gives a prime ideal which gives a point in X^{sch}

- η_Y is the generic point of Y
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- If $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$

- Each $Y \subset X$ gives a prime ideal which gives a point in X^{sch}

- η_Y is the generic point of Y

- Points of X^{sch} correspond to subvarieties of X
Varieties vs. Schemes - Part I

- $X \subset \mathbb{A}^n$ variety

- $A(X) = k[x_1, \ldots, x_n]/I(X)$ coordinate ring

- $X^{\text{sch}} = \text{Spec } A(X)$

- If $x \in X$ then $m_x \subset A(X)$ maximal ideal gives a point of X^{sch}

- X^{sch} has prime ideals corresponding to subvarieties $Y \subset X$

- Each $Y \subset X$ gives a prime ideal which gives a point in X^{sch}

- η_Y is the generic point of Y

- Points of X^{sch} correspond to subvarieties of X
Varieties vs. Schemes - Part I

- f polynomial.
Varieties vs. Schemes - Part I

- f polynomial. What is the value of f at η_Y?
Varieties vs. Schemes - Part I

- *f* polynomial. What is the value of *f* at *η*?<n>

- *f*(η) ∈ *K*(Y) is given by *f|Y*.
Varieties vs. Schemes - Part I

- *f polynomial.* What is the value of *f* at *η*_Y_?*

- *f(η_Y) ∈ K(Y)* is given by *f|_Y_.*

- *Y = {x} then f(x) ∈ k*
Varieties vs. Schemes - Part I

► f polynomial. What is the value of f at η_Y?

► $f(\eta_Y) \in K(Y)$ is given by $f|_Y$.

► $Y = \{x\}$ then $f(x) \in k$
Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}.$$
Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}.$$

Rephrase:

$$x \in Z(S) \iff f \in m_x$$
Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}.$$

Rephrase:

$$x \in Z(S) \iff f \in m_x \iff S \subset m_x.$$
Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}.$$

Rephrase:

$$x \in Z(S) \iff f \in m_x \iff S \subseteq m_x.$$

Definition

Let A be a ring, $S \subseteq A$.

Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}.$$

Rephrase:

$$x \in Z(S) \iff f \in m_x \iff S \subset m_x.$$

Definition

Let A be a ring, $S \subset A$. We define

$$Z(S) = \{ \mathfrak{p} : S \subset \mathfrak{p} \} \hookrightarrow \text{Spec } A.$$

These are the closed subsets of Spec A.

Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{ x : f(x) = 0 \text{ for all } f \in S \}. $$

Rephrase:

$$x \in Z(S) \iff f \in m_x \iff S \subset m_x.$$

Definition

Let A be a ring, $S \subset A$. We define

$$Z(S) = \{ p : S \subset p \} \hookrightarrow \text{Spec } A.$$

These are the closed subsets of SpecA.

$$Z(S) = Z(\langle S\rangle) \implies \text{WLOG: use ideals}$$
Zariski topology

In 203A, for a set S of polynomials, we defined the closed subsets

$$Z(S) = \{x : f(x) = 0 \text{ for all } f \in S\}.$$

Rephrase:

$$x \in Z(S) \iff f \in m_x \iff S \subset m_x.$$

Definition

Let A be a ring, $S \subset A$. We define

$$Z(S) = \{p : S \subset p\} \to \text{Spec } A.$$

These are the closed subsets of Spec A.

$$Z(S) = Z(\langle S \rangle) \implies \text{WLOG: use ideals}$$
Lemma

$S_i \subset A$ ideals

1.

$$S_1 \subseteq S_2 \implies Z(S_2) \subseteq Z(S_1).$$
Lemma

$S_i \subset A$ ideals

1.

\[S_1 \subset S_2 \implies Z(S_2) \subset Z(S_1). \]

2.

\[Z(1) = \emptyset, \quad Z(0) = \text{Spec } A \]
Lemma

$S_i \subseteq A$ ideals

1.

$S_1 \subseteq S_2 \implies Z(S_2) \subseteq Z(S_1)$.

2.

$Z(1) = \emptyset$, $Z(0) = \text{Spec } A$

3.

$\bigcap_i Z(S_i) = Z(\bigcup_i S_i)$
Lemma

$S_i \subset A$ ideals

1. $S_1 \subseteq S_2 \implies Z(S_2) \subseteq Z(S_1)$.

2. $Z(1) = \emptyset$, $Z(0) = \text{Spec } A$

3. $\bigcap_i Z(S_i) = Z(\bigcup_i S_i)$

4. $Z(S_1) \cup Z(S_2) = Z(S_1 \cap S_2)$

These sets form the closed sets of the Zariski topology on $\text{Spec } A$.
Lemma

* $S_i \subset A$ ideals

1. $S_1 \subseteq S_2 \implies Z(S_2) \subseteq Z(S_1)$.

2. $Z(1) = \emptyset$, $Z(0) = \text{Spec } A$

3. \[\bigcap_i Z(S_i) = Z\left(\bigcup_i S_i\right) \]

4. $Z(S_1) \cup Z(S_2) = Z(S_1 \cap S_2)$

These sets form the closed sets of the Zariski topology on $\text{Spec } A$.
Lemma
$S_i \subset A$ ideals

1. $S_1 \subseteq S_2 \implies Z(S_2) \subseteq Z(S_1)$.

2. $Z(1) = \emptyset$, $Z(0) = \text{Spec } A$

3. $\bigcap_i Z(S_i) = Z(\bigcup_i S_i)$

4. $Z(S_1) \cup Z(S_2) = Z(S_1 \cap S_2)$

These sets form the closed sets of the Zariski topology on $\text{Spec } A$.
Proof of 4:

Claim: $S_1 \cap S_2 \subset p \implies S_1 \subset p \text{ or } S_2 \subset p$
Proof of 4:

Claim: \(S_1 \cap S_2 \subset p \implies S_1 \subset p \text{ or } S_2 \subset p \)

Proof:

\(f_1 \in S_1 \setminus p, f_2 \in S_2 \setminus p \)

\(f = f_1 f_2 \in S_1 \cap S_2 \)

\(f \not\in p \) – contradiction
Proof of 4:

Claim: \(S_1 \cap S_2 \subset p \implies S_1 \subset p \) or \(S_2 \subset p \)

Proof:

- Let \(f_1 \in S_1 \setminus p \), \(f_2 \in S_2 \setminus p \)
Proof of 4:

Claim: \(S_1 \cap S_2 \subset p \implies S_1 \subset p \) or \(S_2 \subset p \)

Proof:

- Let \(f_1 \in S_1 \setminus p, f_2 \in S_2 \setminus p \)
- \(f = f_1 f_2 \in S_1 \cap S_2 \)
Proof of 4:

Claim: \(S_1 \cap S_2 \subset p \implies S_1 \subset p \text{ or } S_2 \subset p \)

Proof:

- Let \(f_1 \in S_1 \setminus p, f_2 \in S_2 \setminus p \)

- \(f = f_1 f_2 \in S_1 \cap S_2 \)

- \(f \notin p \)
Proof of 4:

Claim: \(S_1 \cap S_2 \subset p \implies S_1 \subset p \text{ or } S_2 \subset p \)

Proof:

- Let \(f_1 \in S_1 \setminus p, f_2 \in S_2 \setminus p \)

- \(f = f_1 f_2 \in S_1 \cap S_2 \)

- \(f \not\in p \) – contradiction
Proof of 4:

Claim: $S_1 \cap S_2 \subset p \iff S_1 \subset p \text{ or } S_2 \subset p$

Proof:

- Let $f_1 \in S_1 \setminus p$, $f_2 \in S_2 \setminus p$

- $f = f_1 f_2 \in S_1 \cap S_2$

- $f \not\in p$ – contradiction
Closed points

$X = \text{Spec } A$ is not Hausdorff.
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

\[
\{q\} = Z(q) = \{p : q \subset p\}
\]
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$\overline{\{q\}} = Z(q) = \{p : q \subset p\}$

q is closed iff q is maximal
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

\[\overline{\{q\}} = Z(q) = \{p : q \subset p\} \]

- q is closed iff q is maximal
- A domain,
Closed points

\(X = \text{Spec } A \) is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

\[\overline{\{q\}} = \overline{Z(q)} = \{p : q \subset p\} \]

- \(q \) is closed iff \(q \) is maximal
- \(A \) domain, \((0)\) is a point of \(X \),
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$$\{q\} = Z(q) = \{p : q \subset p\}$$

- q is closed iff q is maximal
- A domain, (0) is a point of X,

$$\overline{(0)} = X.$$
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$$\overline{\{q\}} = Z(q) = \{p : q \subset p\}$$

► q is closed iff q is maximal
► A domain, (0) is a point of X,

$$\overline{(0)} = X.$$

Generic point of X.
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$$\{q\} = Z(q) = \{p : q \subset p\}$$

- q is closed iff q is maximal
- A domain, (0) is a point of X,

$$\overline{(0)} = X.$$

Generic point of X.

- $Y \subset X$ is irreducible closed subset,
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

\[
\overline{\{q\}} = Z(q) = \{p : q \subset p\}
\]

- q is closed iff q is maximal
- A domain, (0) is a point of X,

\[
\overline{(0)} = X.
\]

Generic point of X.

- $Y \subset X$ is irreducible closed subset, η_Y generic point with

\[
\overline{\eta_Y} = Y^{\text{sch}}
\]
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$$\overline{\{q\}} = Z(q) = \{p : q \subset p\}$$

- q is closed iff q is maximal
- A domain, (0) is a point of X,
 $$\overline{(0)} = X.$$

Generic point of X.

- $Y \subset X$ is irreducible closed subset, η_Y generic point with
 $$\overline{\eta_Y} = Y^{\text{sch}}$$
Closed points

$X = \text{Spec } A$ is not Hausdorff.

There are points which are not closed.

Lemma (Homework)

$$\overline{\{q\}} = Z(q) = \{p : q \subset p\}$$

- q is closed iff q is maximal
- A domain, (0) is a point of X,
 $$\overline{(0)} = X.$$

Generic point of X.

- $Y \subset X$ is irreducible closed subset, η_Y generic point with
 $$\overline{\eta_Y} = Y^{\text{sch}}$$
Distinguished open sets

Let \(f \in A \), \(X = \text{Spec } A \).
Distinguished open sets

Let $f \in A$, $X = \text{Spec } A$.

- The open sets

$$X_f = X \setminus Z(f) = \{p \in X : f \notin p\}$$

are called distinguished.
Distinguished open sets

Let $f \in A$, $X = \text{Spec } A$.

- The open sets

$$X_f = X \setminus Z(f) = \{ p \in X : f \not\in p \}$$

are called distinguished.

- Rephrase

$$f([p]) \in A/p \text{ is not zero, } X_f = \{ p : f(p) \neq 0 \}$$
Distinguished open sets

Let \(f \in A, \ X = \text{Spec} \ A. \)

- The open sets

\[
X_f = X \setminus Z(f) = \{ p \in X : f \notin p \}
\]

are called distinguished.

- Rephrase

\[
f([p]) \in A/p \text{ is not zero, } \ X_f = \{ p : f(p) \neq 0 \}
\]

- \(X_f \) form a basis for the Zariski topology:

\[
X \setminus U = Z(S) \implies U = \bigcup_{f \in S} X_f.
\]
Distinguished open sets

Let $f \in A$, $X = \text{Spec } A$.

- The open sets

$$X_f = X \setminus Z(f) = \{ p \in X : f \not\in p \}$$

are called distinguished.

- Rephrase

$$f([p]) \in A/p \text{ is not zero, } X_f = \{ p : f(p) \neq 0 \}$$

- X_f form a basis for the Zariski topology:

$$X \setminus U = Z(S) \implies U = \bigcup_{f \in S} X_f.$$